

Das Fortschrittliche
Fertigung Workshop4.0
Framework

02

Die Unterstützung der Europäischen Kommission für die Erstellung dieser Veröffentlichung stellt keine Billigung der Inhalte dar, der ausschließlich die Ansichten der Autoren wiedergibt, die Kommission kann nicht für die Verwendung der darin enthaltenen Informationen verantwortlich gemacht werden.

This work is licensed by the EXAM 4.0 Partnership under a Creative Commons Attribution-NonCommercial 4.0 International License.

EXAM 4.0 partners:

TKNIKA – Basque VET Applied Research Centre, CIFP Miguel Altuna, DHBW Heilbronn – Duale Hochschule Baden-Württemberg, Curt Nicolin High School, Da Vinci College, AFM – Spanish Association of Machine Tool Industries, 10XL, and EARLALL – European Association of Regional & Local Authorities for Lifelong Learning.

INHALTSVERZEICHNIS

1.	Abstrakt	05
2.	Einleitung	06
	■ Kategorisierung bestehender & neuer LABs	06
	■ Betriebsmodell	07
	Zweck und Ziele	80
	Prozess	09
	■ Einstellung	10
	■ Produkt	11
	■ Didaktik	12
	■ Metrik	13
	Lernfabriken	14
	Pro und Contra zu Lernfabriken	16
	EXAM 4.0 Berufsbildungszentrum-Modell für AM LABs	18
	■ Fazit	26
3.	Anhang	27
	■ Beschreibung der bestehenden LABs - LABs der EXAM 4.0-Partner	27
	Curt Nicolin Gymnasiet - Schweden	27
	■ Miguel Altuna LAB - Basqueland, Spanien	37
	■ DHBW - Deutschland	71
	■ Da Vinci College - Niederlande	85
	■ Übersicht über die LABs der Konsortialpartner der Berufsbildungszentren	87
	■ Die LABore der EXAM 4.0-Verbundpartner	90
	Zerspanungslabor	90
	■ TKGUNE Zerspanung LAB	108
	■ Smart Factory LAB	124
4.	Literaturhinweise	133

Die Unterstützung der Europäischen Kommission für die Erstellung dieser Veröffentlichung stellt keine Billigung der Inhalte dar, der ausschließlich die Ansichten der Autoren wiedergibt, die Kommission kann nicht für die Verwendung der darin enthaltenen Informationen verantwortlich gemacht werden.

Abkürzungsverzeichnis

AI	Artificial Intelligence
AM	Advanced Manufacturing
AR	Augmented Reality
CAD	Computer Aided Design
CAM	Computer Aided Manufacturing
CoVE	Centres of Vocational Excellence
CPS	Cyber-Physical systems
D	Deliverable
EQF	European Qualifications Framework
EXAM 4.0	Excellent Advanced Manufacturing 4.0
HVET	Higher Vocational Education and Training
I4.0	Industry 4.0
ICT	Information and communications technologies
loT	Internet of Things
IIoT	Industrial Internet of Things
IT	Information Technology
KETs	Key Enabling Technologies
M2M	Machine to machine communication
OT	Operational Technology
RFID	Radio Frequency Identification
VET	Vocational Education and Training
VR	Virtual Reality
WP	Work Package

Abstrakt

Industrie 4.0 stellt neue Anforderungen an Arbeitnehmer, neue Technologien erfordern innovative Lösungen, also innovative Arbeitnehmer, die sich an die erforderlichen Änderungen anpassen können und einen Mehrwert für den Industriesektor bieten. Die neuen Anforderungen an die Arbeitnehmer erzeugen wiederum neue Anforderungen an die Bildung. Institutionen haben sowohl einen großen Einfluss auf die Bildung, als auch eine große Verantwortung, um sicherzustellen, dass der richtige Bildungsansatz verwendet wird. LABs oder Lernfabriken, also Lernumgebungen, stellen eine Schlüsselrolle in der beruflichen Bildung und Exzellenz dar. In diesem Bericht wird ein Modell zur Beschreibung von bestehenden und zukünftigen LABs erstellt. Das Modell stellt sicher, dass Informationen über LABs in Europa gesammelt, ausgewertet und verglichen werden können. Die gesammelten Informationen über LABs sind relevant, um den Status der Berufsbildungszentren in Europa zu sehen, aber auch für Berufsbildungszentren, die mit anderen Berufsbildungszentren kooperieren und Exzellenz, Ausrüstung und Wissen teilen wollen.

Dieser Bericht enthält die finale Version eines EXAM 4.0 Modells für Berufsbildungszentren zur Beschreibung von AM LABS. Das Modell ist in 9 + 1 Abschnitte unterteilt und befasst sich mit der Ausrüstung, den Maschinen, IKT-Anwendungen, Lernmethoden usw., die im LAB verwendet werden, und beinhaltet Informationen über Ausbildungsprogramme im LAB sowie die Struktur des LAB, die Produktion und Produkte. Das Modell wurde von den Konsortialpartnern ausgearbeitet und basiert auf dem Modell von Abele zur Beschreibung von Lernfabriken. Nicht alle LABs sind tatsächlich Lernfabriken, jedoch können alle Lernfabriken als LABs definiert werden. Das Modell, das zur Beschreibung von Lernfabriken erstellt wurde, wird daher in diesem Bericht weiterentwickelt, um die Möglichkeit zu haben, alle LABs zu beschreiben. Die Beschreibung bestehender LABs ist die erste Maßnahme, die ergriffen werden muss, um Exzellenz in der Berufsbildung zu schaffen.

KATEGORISIERUNG VON BESTEHENDEN UND NEUEN LABS

Die Beschreibung von I4.0-Bildungs-LABs für die Berufsbildung ist keine einfache Aufgabe, wenn man den europäischen Kontext des EXAM 4.0-Konsortiums betrachtet. Die nationalen Gegebenheiten und sogar das institutionelle Modell der einzelnen Partner unterscheiden sich, obwohl die Grundlagen für die Definition der Labs ähnlich sein können. Darüber hinaus erschwert das Fehlen eines gemeinsamen Standards für Berufsbildungslehrpläne, Niveaus, Ziele usw. die Festlegung einer gemeinsamen Definition von Labs. Um diese Probleme zu überwinden, haben wir die von Abele et al. definierte Morphologie der Lernfabriken als gemeinsamen Standard zur Beschreibung unserer Labore übernommen.

Abele et al. standen bei der Beschreibung von Lernfabriken vor dem gleichen Problem: Es werden realistische Lernumgebungen entwickelt, um Studenten und bestehende Mitarbeiter in der Produktion und im Schulbereich auszubilden. Es gibt keinen strukturierten Rahmen, den man bei der Beschreibung von Lernfabriken verwenden kann. Auch wenn die Methodik zwischen den Lernfabriken vergleichbar ist, gibt es Unterschiede in der Gestaltung und Ausrichtung der LABs (Abele et al., 2015b).

Abele et al. erklärt, dass die CIRP CWG und das Projekt Netzwerk innovativer Lernfabriken (NIL) aufgrund des Mangels an Charakterisierung und standardisierten Beschreibungsmodellen für Lernfabriken das folgende Beschreibungsmodell erstellt und bestätigt haben. Das Beschreibungsmodell kann sowohl für neue als auch für alte Lernfabriken, pädagogische LABs, verwendet werden (Abele et al., 2015b).

Durch die Verwendung dieses Standards wäre es möglich, nicht nur die LABs der EXAM 4.0-Partner, sondern auch andere LABs von Berufsbildungszentren zu vergleichen. Darüber hinaus werden unsere Labs mit bestehenden Lernfabriken vergleichbar sein, sodass es einfacher wird, Möglichkeiten zur Verbesserung und Anpassung unserer aktuellen Konfigurationen zu erkennen.

Es ist jedoch wichtig zu erwähnen, dass nicht alle in EXAM 4.0 beschriebenen LABs als Lernfabriken angesehen werden können, da sie einige der wesentlichen Merkmale der Lernfabriken nicht erfüllen, in einigen Fällen gibt es kein tatsächliches Produkt, in anderen Fällen sind sie nicht als Produktionslinie konfiguriert usw. Aus Gründen der Vergleichbarkeit werden wir sie jedoch mit dem gleichen Standard beschrieben.

Das Beschreibungsmodell besteht aus 59 Merkmalen mit einzelnen Elementen, die in 7 Gruppen kategorisiert sind (Abele et al., 2015b).

Betriebsmodell

Dies ist die erste Tabelle im Modell zur Beschreibung von Lernfabriken. Sie wird verwendet, um die Grundlage der Lernfabrik zu beschreiben, einschließlich Aspekte wie dem Betreiber der Fabrik und den verschiedenen Finanzierungsmethoden.

1.1	Betreiber	Aka	demische Inst	tution			Nich	t-akademisc	he Institutio	on		Gewinnorientierter Betreiber		
		Universitäty	Hochschule	ВА	Berufsschu le/Gymnasi um		Kammer Gewerksc A		Arbeitgeberv erband	Industrielles Netzwerk	Beratung	Produzierend es Unternehme n		
1.2	Trainer	Professor	Forscher		Studentische	Hilfkraft		Technsich	er Experte/I	nt. Spezialist	Berater	Päda	agoge	
1.3	Entwicklungen			ſ	Extern geförderte Entwicklung					Externe Entwicklung				
1.4	Anfangsfinanzierung		Intern	e Mittel		Öfentliche Mittel						Geschäftsmittel		
1.5	Laufende Finanzierung		Intern	e Mittel			Öfentliche Mittel					Geschäftsmittel		
1.6	Förderkontinuität	Kurzfristige F	inanzierung z.E	3.: einzelne Vera	anstaltungen)	Mittelfristige I	Förde	erungen (z.B. <3Jahr	•	nd Programme		istige Förderung (Prohejte und Programme > 3 Jahre)		
1.7	Geschäftsmodell für			Offene Modelle							<i>a</i> 5			
1.7	Schulungen	Club-N	Modelle	k	(ursgebühren		Geschlossene Modelle (Trainingsprogram			ogramme nur n	ur Eirizeiuntem	leninen		

Abbildung 1 Betriebsmodell (Abele et al., 2015b)

Absichts- und Zielsetzung

Die zweite Tabelle befasst sich mit den Zwecken der Lernfabrik, z.B. Lernen oder Forschen, sowie mit den verschiedenen Zielen, für die sie eingesetzt wird.

2.1	Hauptzweck		Au	sbildung					Berufsbild	ung				•		F	orschung		
2.2	Sekundärer Zweck		Testumgebu	ng/Pilotumç	gebung		Industrie	produktion			Innova	tionstransfer		Anzeige für Produktion					
				Studieren	de				Arbeitne	hmer									
2.3	Ziepgruppen für Bildung und Training	Schüler	Bachelor	Master	Doktoranden	Auszubilden Fachkraft	Ausgebildet	e Ungelernte			managers		Unterr	nehmer	Freiberufle	r Arbeits	slos	Öffentlich zugänglich	
			Dacrieior	iviaster	Doktoranden	de Fachkraft		Fachkraft Fachkraft	ft Fachkraft	Unter		Mittleres lanagement	Top- Management						
2.4	Gruppenkonstellati on		ho	mogeen		heterogen (Wissensstand, Hierarchie, Studierende +								+ Mitarbei	iter, etc.)				
			Maschinen	- und Anlage	enbau	Automobil Logistik				.ogistik	ogistik Transport					FMCG	Lu	ıft- und Ra	aumfahrt
2.5	Zielindustrien		Chemis	sche Industr	rie	E	Elektronik		Kor	nstruktion		Versiche	rungen/Bankw	kwesen Textil		Textil			
2.6	Fachbezogener lerninhalt		onsmanag ent & isation.	Ressour	ceneffizienz	Lean-	Manageme	nt	Automatisie	rung	CPPS	Abeitssyste altun		I MI			alogistik, Des Managemen		
2.7	Rolle des LAB für die Forschung					Forschungsobjekt						factor	die onderz	zoek mogeli	k maakt				
2.8	Forschungstehmen	Produktionsmanagement & Organisation				Ressourceneffizienz Lean Management			Automatis	erung C	PPS	Verände	rbarkeit	НМІ	Dida	aktik			

Abbildung 2 Zweck & Zielsetzung (Abele et al., 2015b)

Prozess

Die dritte Tabelle befasst sich mit dem Lebenszyklus der verschiedenen Aspekte der Lernfabrik, ihren Funktionen sowie dem Produktionsprozess.

3.1	Produktlebenszyklus	Produktplanu ng	Produktentwic klung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	e S	Service	S	ervice	Produktlebens zyklus
3.2	LAB Lebenszyklus	Investitionspl anung	Fabrikkonzept	Prozessplanun g	Hochlauf	Fertigung	Montage	e S	Service	W	artung	LAB Lebenszyklus
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequ enzierung	Produktions termin		Fertigung	Montage Service Kommissionierun Verpackung		•	Versand		
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle Prüfung		Fertigung	Montage	e S	Service	W	artung	Modernisierun g
3.5	Indirekte Funktionen	SCM	Vertrieb	Eink	auf	HR	Finaze	Finazen/Controlling			QM	
3.6	Materialfluss		Kontinuierlid	che Produktion		diskrete fertigung						
3.7	Prozesstyp	Massenp	produktion	Serienpro	oroduktion Kleinserienferti				rienfertigung			enfertigung
3.8	Fertigungsorganisation	Ortsgebunde	ene Fertigung	Werkbank	fertigung	Werkstattferti		ertigun	ıg		Werkstattfertigung	
3.9	Automatisierungsgrad	Mar	nuell	Teil	automatisiert/h	/bride Automatisier	rung			Volla	utomatisch	
3.10	Fertigungsmethoden	Schneiden	Trad. Primäre	e Formgebung	Additive Fertigung	Additive Fertig	gung Fü	igen	Beschicht	tung		erung genschaften
3.11	Fertigungstechnologien		Physisch			Chemisch biologisch					ologisch	

Abbildung 3 Prozess (Abele et al., 2015b)

Setting |

Die vierte Tabelle betrifft die verschiedenen Einstellungen der Lernfabrik, z.B. wie die Fabrik gestaltet ist. Hinsichtlich der Größe und Veränderbarkeit und inwieweit es sich um eine physische oder virtuelle Umgebung handelt.

4.1	Lernumgebung	Rein physikalisch (Planung + Ausführung)		nterstützt durch digitale iehe "IT-Integration")	Physisch, virt	cuell erweitert	Rein virtuell (Planung + Ausführung)
4.2	Umgebungsskala		Verkleinert			Lebens	groß
4.3	Arbeitssystemebene	Arbeitsort	А	rbeitssystem	W	erk	Netzwerk
4.4	Enablers für Verädnerbarkeit	Mobilität	Modularität	Kompatibilitä	t	Skalierbarkeit	Universalität
4.5	Veränderbarkeitsdimen sionen	Layout & Logistik	Produktmerk male	Produktdesign		Technologie	Produktmengen
4.6	IT-Integration	IT vor SOP (CAD, CAN	/I, Simulation)	IT nach SOP (PPS, EF	RP, MES)	IT nach Pro	oduktion (CRM, PLM)

Abbildung 4 Einstellungen (Abele et al., 2015b)

Produkt |

Die fünfte Tabelle bezieht sich auf die Herstellung des Produkts/der Produkte in der Lernfabrik. Die Fragen beziehen sich auf Aspekte wie Verfügbarkeit auf dem Markt, Menge und Verwendbarkeit.

5.1	Material		Materie	ell (physisches	produkt	`	ir	nmateriell (Ser	vice)	
5.2	Produktform		Stück	gut		Schütt	gut	Strömu	ngsrodukte	
5.3	Produktherkunft	Ei	gene Entwicklun	g	Entwi	cklung durch Teilne	ehmer	Externe Entwicklung		
5.4	Marktfähigkeit des Produktes	Auf	dem Markt verfüg	ıbar	Am Markt v	erfügbar, aber nich vereinfacht	t didaktisch	Nicht auf dme Markt verfügba		
5.5	Produktfunktionalität	Funk	tionsfähiges Prod	dukt	l	ch angepasstes Proschränkter Funktio			on / Anwendung Deonstration	
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon T entwick		Annahme von Aufträgen		
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nach	n teilnehmer	Bestimmt durch Aufträge		
5.8	Anzahl der Komponenten	1 Komponente	2-5 Komponenten	6-20 Kom _l	ponenten	21-50 Komponenten	51-100 Kon	nponenten	> 100 Komponenten	
5.9	Weitere Verwendungen des Produktes		rwendung/- ertung	Ausst	ellung	Werbegeschenk	Verkauf		Entsorgung	

Abbildung 5 Produkt (Abele et al., 2015b)

Didaktik ===

Die sechste Tabelle umfasst Fragen zu Lernmethoden.

6.1	Kompetenzklassen	Fach- Methodenkor		Soziale & kol Kompe	mmunikative etenzen	Persönlichke	itskompetenzen		ings- und umsetzungsorientierte Kompetennzen			
6.2	Dimensionen Lernziele	Kogn	itiv		Affektiv			Psycho-m	otorisch			
6.3	Lernszenariostrategien	Anweisung		Vorführung		Geschloss	enes Szenario	C	offenes Szenari	o		
6.4	Art der lernumgebung	Greenfiel	d (Entwicklung	der Fabrikumg	gebung)	Brownfield (Verbesserung der bestehenden Fabrikumgebung)						
6.5	Kommunikationskanal	Lern	en vor Ort (in F	abrikumgebun	ng)	Fernverbindung (zur Werksumgebung)						
6.6	Grad an Autonomie	Beauft	ragt	Selbs	tgesteuert/-re	guliert Selbstbestimmt/-organisiert						
6.7	Rolle des Trainers	Präsentator	Mode	erator		Coach		Ausbilder				
6.8	Art der Ausbildung	Lernprogramm	Praktische	r Laborkurs	Sen	ninar	Works	hop	Projek	tarbeit		
6.9	Standardisierung von Schulungen		Standardisierte	Schulungen			Individ	duelle Schulun	gen			
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus	s (en bloc)		hsel mit nen teilen	Bedarfsor	ientiert	Dan	ach		
6.11	Auswertungsstufen	Feedback der teilnehmer	Lernen der	Teilnehmer	Transfer in	reale Fabrik	Wirtschaftlcihe der Sch	•	return on tra	inings / ROI		
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstes	t (mündlich)	Schriftlicher Bericht	Mündlcihe Präsentation		n Praktische Prüfung		Keine		

Abbildung 6 Didaktik (Abele et al., 2015b)

Metriken |

Die letzte Tabelle stellt die Vielfalt der Lernenden dar, die in der Lernfabrik simultan beschult warden können.

7.1	Anzahl an Teilnehmern pro Schulung	1-5 Teilnehmer	5-10 Teilnehmer	10-15 Teilnehmer	15-30 Teilnehmer	30> Teilnehme	r
7.2	Anzahl an standardisierten Schulungen	1 Training	2-4 Trainings	5-10 Tra	ainings	> 10 Trainings	
7.3	Durchschnittliche Dauer einer Schulung	≤ 1 Tag	> 1 Tage bis ≤ 2 Tage	> 2 Tage bis ≤ 5 Tage	> 5 days bis ≤ 10 Tage	> 10 Tage bis ≤ 20 Tage	> 20 Tage
7.4	Teilnehmer pro Jahr	< 50 Teilnehmer	50-200 Teilnehmer	201-500 Teilnehmer	501-1000 Teilnehmer	> 1000 Teilnehm	er
7.5	Kapazitätsauslastung	< 10%	> 10 bis ≤ 20%	> 20%bis ≤ 50% > 50% bis ≤ 75%		> 75%	
7.6	LABgröße	≤ 100 qm	> 100 qm bis ≤ 300 qm	> 300qm bis ≤ 500qm	>500 qm bis ≤ 1000 qm	> 1000 qm	
7.7	FTE im LAB	AB <1 2-4		5-9	10-15	> 15	

Abbildung 7 Metrik(Abele et al., 2015b)

LERNFABRIKEN

Es macht Sinn, den Ansatz der Lernfabriken zu adaptieren, wenn es darum geht, die EXAM 4.0 Advanced Manufacturing Labs für die Definition der Berufsbildung zu erstellen. Es gibt viele Aussagen, die diese Entscheidung unterstützen:

Industrie 4.0 findet im Moment statt, die Industrie arbeitet also auf die Revolution hin und schafft smarte Fabriken. Die Anpassung an Industrie 4.0-Prozesse erfordert eine völlig neue, vielfältige Sammlung von Skills für Ingenieure und weiteres beteiligtes Personal (Karukapadath und Parekattil 2019).

Industrie 4.0 führt dazu, dass die Aufgaben für Arbeitnehmer schwieriger werden, sowohl aus organisatorischer als auch aus technologischer Sicht. Die Ausbildung und Qualifizierung der Arbeitnehmer müssen an die neuen Anforderungen angepasst werden, nur so ist eine Transformation der Unternehmen in Richtung Industrie 4.0 möglich (Gewerbliche Schule Crailsheim o.J.).

Lernfabrik-Initiativen haben in den letzten Jahren deutlich an Aufmerksamkeit gewonnen, sowohl auf lokaler, europäischer als auch internationaler Ebene(Abele 2015a).

Lernfabriken, LABs, sind für Bildungsfunktionen wie Forschung, Produktion, Dienstleistungsbetrieb etc. konzipiert (Karukapadath und Parekattil 2019).

Lernfabriken können als Bildungseinrichtungen identifiziert werden, die Aktivitäten in einer realen Industrie oder Fabrik nachahmen (Karukapadath und Parekattil 2019).

Lernfabriken sind vernetzte Systeme, die digital vernetzte Produktionsprozesse mit hoher Flexibilität für die berufliche Aus- und Weiterbildung abbilden. An Berufsschulen dienen Lernfabriken vor allem dazu, Fachkräfte und Berufseinsteiger auf die Anforderungen der Industrie 4.0 vorzubereiten. Dies geschieht durch die Einführung von Ausbildern und Teilnehmern in Weiterbildungskursen zur Bedienung von Anlagen, die sich an realen Industriestandards orientieren (Wirtschaft digital Baden-Württemberg 2020).

Eine "Lernfabrik 4.0" im Kontext von Schulen ist ein Fabrikmodell, das sich an den Anforderungen von Industrie 4.0 orientiert. In den Fabrikmodellen werden industrielle Automatisierungsprozesse für die Bildung in Betrieb genommen und umgesetzt. Die mit diesen Prozessen verbundenen Anwendungen, Maschinenbau und Elektrotechnik, werden digital mit intelligenten Produktions- und Fertigungssteuerungssystemen verknüpft (Gewerbliche Schule Crailsheim o.J.).

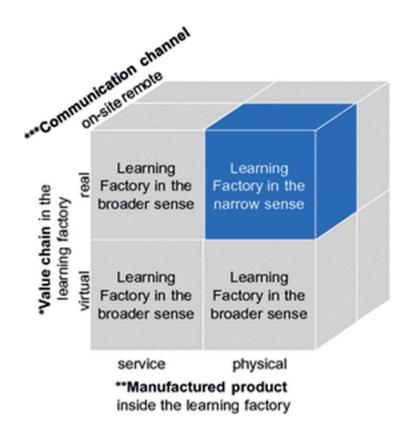
Eine Lernfabrik 4.0 ist ein Labor, das eine ähnliche Struktur und Ausstattung wie eine industrielle Automatisierungsumgebung vorweist, in der die Grundlagen anwendungsorientierter Prozesse geschult werden können. Ziel der Lernfabriken ist es, Fachkräfte und Studierende auf die neuen Anforderungen der Digitalisierung vorzubereiten (Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg 2019).

Als Zusammenfassung der Lernfabriken:

Eine Lernfabrik ist eine Umgebung mit pädagogischer Zielsetzung, im Vergleich mit einer realen industriellen Fabrik ist sie realitätsnah und bietet Zutritt zu Produktionsprozessen und -bedingungen, die problem- und handlungsorientiertes Lernen ermöglichen (Kreimeier, Dieter 2016).

Eine Lernfabrik kann als eine durch Prozesse spezifizierte Bildungsumgebung erklärt werden. Sie ist ein Modell, das einer realen Wertschöpfungskette ähnelt, einer konkreten Produktion eines Produktes, das mit einem didaktischen Konzept verwoben ist (Abele, Metternich und Tisch 2019).

Die vorangegangenen Ausführungen zu den Lernfabriken zeigen, dass der Ansatz der Lernfabriken sehr gut mit den Zielen von EXAM 4.0 als zu verfolgender Standard passt.


VOR- UND NACHTEILE VON LERNFABRIKEN

Vorteile einer Lernfabrik als Bildungsmethode:

- Es ist eine definitive Methode f
 ür die Ausbildung von I4.0-Technologien.
- Lernfabriken verwenden realistische Problemsituationen.
- Lernfabriken beinhalten praxisnahes Lernen.
- Wird eine virtuelle Lernfabrik erstellt, ist es möglich, größere Fabrikstrukturen abzubilden.
- Die meisten Lernfabriken stellen Produkte her, da sie eine reale Wertschöpfungskette simulieren, was beim Verkauf dieser Produkte zu Einnahmen führen kann.
- Es ist möglich, Klassen zusammenzulegen, da eine Lernfabrik eine reale Produktionsumgebung nachbildet. Die Klassen können auf diese Weise mit unterschiedlichen Aufgabenstellungen, aber mit dem gleichen Produktionsziel arbeiten.
- Gleiche Qualitätsanforderungen wie in der realen Produktion.

Nachteile einer Lernfabrik als Bildungsmethode:

- Eine Lernfabrik simuliert die reale Industrieproduktion, die Industrie entwickelt sich mit hoher Geschwindigkeit weiter, die Lernfabriken werden daher schnell veraltet sein. Es ist daher eine schwierig, Lernfabriken zu pflegen.
- Es ist schwierig und zeitaufwendig, ganze Fabriken oder Netzwerke abzubilden, um eine Lernfabrik zu erstellen.
- Es mangelt an Mobilität in Lernfabriken, da die Produktion auf bestimmte Maschinen angewiesen ist.

Pros of the learning factory core concept:

- + hands-on learning
- + own experiences and actions
- + high contextualisation
- + activation of learner
- + realistic problem-based learning
- + high motivation, immersion
- + collectivization
- + integration of thinking and doing
- + self-regulation and self-direction

Cons of the learning factory core concept:

- resource requirements
- focus on a small part of production
- mapping of large factory structures
- long action-to-feedback-cycles are a challenge
- flexibility and changeability comes with high effort
- scalability challenges
- lack of mobility

Abbildung 8 Vor- und Nachteile des Kernkonzepts Lernfabrik (Abele, Metternich, and Tisch 2019)

EXAM 4.0 VET/HVET ZENTRUM MODELL FÜR AM LABS

Einleitung

Dieses Modell wird von den Partnern des Konsortiums durch Unterstützung von Unternehmen, assoziierten Partnern und dem Modell zur Beschreibung von Lernfabriken von Abele et al. (Abele et al., 2015b) erarbeitet, um bestehende und zukünftige AM LABs 4.0 und deren Eigenschaften zu beschreiben.

Das Modell wurde entwickelt, um eine gemeinsame Struktur für Beschreibungen von AM LABs zu schaffen. Das Beschreibungsmodell umfasst Aspekte der LABs wie physische Merkmale, Ausstattung, IKT-Anwendungen, I4.0-Technologien, Methodologien, Lernstrategien usw. Das Beschreibungsmodell basiert auf dem Beschreibungsmodell für Lernfabriken, das in dem Bericht Learning Factory Morphology - Study Of Form And Structure Of An Innovative Learning Approach In The Manufacturing Domain von Abele, Hummel, Metternich, Ranz und Tisch erstellt wurde.

Partner, Organisationen und Institutionen können die Beschreibungen von AM LABs 4.0 nutzen, um Informationen zu verschiedenen LABs zu bewerten und zu vergleichen.

In den folgenden Abschnitten wird eine detaillierte Beschreibung einer Reihe von Referenz-LABs gezeigt. Alle LABs werden mit der folgenden Struktur beschrieben:

Erster Part – Allgemeine Beschreibung, zusammenfassende Tabelle

Die nachfolgende Übersichtstabelle wurde erstellt, um allgemeine Informationen über eine bestimmte Lernumgebung, das AM 4.0 LAB, zu präsentieren. Weitere Informationen über die in Frage kommenden AM LABs 4.0 werden zusätzlich durch das Fragemodell und Tabellen im nachfolgenden Abschnitt beschrieben.

	Name of the LAB			-					MAIN PURPOSE				
	VET/HVET centre			-					Education	-			
GENERAL INFORMATION	Floor space of the lab (sqm)			-					Training	-			
	Main topic/learning content			-				F	Research/Applied innovation _				
	I4.0 related technologies				'								
	Learning content					-							
PURPOSE	Secondary purpose												
	LAB type		Specific			Mixed			Learning Factory				
	Learning programmes/study programmes/levels	Na	me of the programmes	carried out on the Lab		EQF Level	Lab hours	N° subjects on the lab	Hour/Week x n° of weeks	Nº students (3)			
								_	_ x _	-			
LEARNING CONTENTS			=			-	_	_	_ x _	_			
						_	_	_	_ x _	_			
						_	_	_	_ x_				
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell 9			
	Category of cell	-	-	-	-	-	-	-	-	-			
	Nº machines	-	-	-	-	-	-	-	-	-			
SETTINGS	I4.0 Enabler technologies used and	Robotics	Additive Manufacturing	Cloud	CPS	Mobile/Tablet	AR/VR	Big data analytics	Ai	loT/lloT			
	implementation level	Sensors/Actuators	RFID	M2M	Cybersecurity	Digital twin							

Spezifisches Labor: Ein Labor, das entworfen und eingerichtet wurde, um eine bestimmte Technologie zu lehren/zu lernen. Zum Beispiel Additive Manufacturing LABs, Robotik LABs, IoT LABs (didaktische LABs von Festo, SMC und anderen) usw.

Gemischtes Labor: Das Hauptziel des Labors ist nicht eine (I4.0) spezifische Technologie, sondern das Implementieren dieser Technologien zur Ergänzung der Hauptaktivität. Das kann sein: Zerspanungs-LABs mit nachgerüsteten Maschinen, die Sensoren und Datenerfassungssysteme enthalten, Metallumformungs-LABs, in denen Cobots/Roboter implementiert sind usw.

Lernfabrik: Eine LF ist eine Lernumgebung, die eine reale Produktion darstellt, die reale Produkte herstellt.

Studienprogramme: Die Lernaktivitäten, die in den LABs durchgeführt werden, sind in der Regel Teil eines umfassenderen Programms. Der Name des Programms und sein EQR-Niveau sind gekennzeichnet. Die Stunden beziehen sich auf die Stunden, die für die Aktivitäten im Labor aufgewendet werden.

Die Anzahl der Themen bezieht sich auf die verschiedenen Themen oder Bereiche, die von einer Gruppe im Labor behandelt werden könnten. Sie können als die Anzahl der separaten Trainingsaktivitäten betrachtet werden.

Anzahl der Teilnehmer und Gruppen pro Woche im Labor. 3x20 bedeutet 3 Gruppen mit je 20 Teilnehmern. Dies ist die maximale Anzahl von Schülern/Gruppen, die gleichzeitig in den LABs arbeiten können.

Zelle/Bereich: Teil des Labors, in dem eine Anzahl von Maschinen gruppiert ist. Zellen können in 2 Typen unterteilt werden:

- a) Zellen mit Maschinen mit ähnlichen Eigenschaften.
- b) Zellen mit einer aufeinanderfolgenden Anzahl von Maschinen, in denen aufeinanderfolgende Operationen durchgeführt werden.

Newton	Vollständig implementiert	Zu gewissem Grad implementiert	Implementierung geplant	Nicht implementiert
Nutzungsgrad:	Implementation	araa impiomoniore	gopiani	

Der zweite Abschnitt – die detaillierte Beschreibung

leicht transformierte Version des Modells zur Beschreibung von Lernfabriken von Abele's et al. (Abele et al., 2015b). Diese Tabellen werden zur Beschreibung von Lernumgebungen, AM LABs, verwendet. Da nicht alle AM LABs Lernfabriken sind, werden die Tabellen vorteilhaft angepasst, um das Modell zur Beschreibung von LABs als Teil von EXAM 4.0 zu erfüllen. Die Mehrzahl der AM LABs sind jedoch Teilmengen oder Scale-Downs von Lernfabriken, daher der Grund für die Verwendung dieser Tabellen.

Die grüne Farbe im Kasten darunter wird zur Einfärbung der Fenster in den folgenden Tabellen bezüglich der Eigenschaften des jeweiligen AM LAB 4.0 verwendet. Die gelbe Farbe kann verwendet werden, wenn eine Antwort bis zu einem gewissen Grad relevant ist.

BETRIEBSMODELL

		Akadem	ische Institutio	n	Nicht-akademische Institution							Gewinnorientierter Betreiber	
1.1	Betreiber	Universitäty	Hochschule	ВА	Berufsschu	le/Gymnasium	Kammer	Gewerkschaft	Arbeitgeberverband	Industrielles Netzwerk	Beratung	Produzierendes Unternehmen	
1.2	Trainer	Professor	Forscher		Studentische	Hilfkraft	Tec	hnsicher Experte	/Int. Spezialist	Berater	P	ädagoge	
1.3	Entwicklungen		Eigene Entwic	klung			Extern ge	förderte Entwickl	Externe Entwicklung				
1.4	Anfangsfinanzierung		Interne Mit	tel			entliche Mittel	G	Geschäftsmi	ttel			
1.5	Laufende Finanzierung		Interne Mit	tel			Öfe	entliche Mittel		Geschäftsmittel			
1.6	Förderkontinuität	Kurzfrist	ige Finanzierun Veranstaltun		inzelne	Mittelfristige	Förderungen (z.B. Projekte unc	l Programme <3Jahre)	Langfristige Förderung (Prohejte und Programme > 3 Jahre)			
4.7	Geschäftsmodell für		Offen	e Model	le			Sasahlasaana M	adalla (Traininga pragram				
17	Geschäftsmodell für Schulungen	Club-Modelle Kursgebüh				en	Geschlossene Modelle (Trainingsprogramme nur für Einzelunt					en	

Beschreibung der Finanzierungsmethoden:

PURPOSE AND TARGETS

2.1	Hauptzweck		Aus	sbildung					Berufsbild	ung		-		Forschung					
2.2	Sekundärer Zweck		Testumgebu	ng/Pilotumg	ebung		Industriep	roduktion			Inno	ationstransfer			Anzeige für Produktion				
				Studierend	de				Arbeitn	ehmer									
2.3	Ziepgruppen für Bildung und Training	Schüler	Bachelor	Master	Doktoranden	A a mulbildon do	Cookleroft	Ausgebildet	e Ungelerr	te		Managers	Managers		rnehmer	Freiberufler	Arbeitslos	Öffentlich zugänglich	
			Bacrieior	iviaster	DORIOTATIONT	n Auszubildende Fachkraft Ausgebildere Fachkraft Fachkraft Fachkraft			U	Interes lagement	Mittleres Management	Top- Managemen	t						
2.4	Gruppenkonstellati on		hoi	mogeen			heterogen (Wissensstand, Hierarchie, Studierende + Mitarbeiter, etc.)												
2,5	Zielindustrien		Maschinen-	und Anlage	nbau	Automobil			Logistii	k		Transport			FMCG	Luft- u	nd Raumfahrt		
2.5	Zielindustrien		Chemis	che Industri	ie	Ele	ektronik		к	onstrukt	tion	Versich	Versicherungen/Bankwe			Textil			
2.6	Fachbezogener lerninhalt	eme	uktionsmanag ement & Ressourceneffizienz ganisation.			Lean-N	lanagement		Automatisierung CPPS Abeitssystemgest altung			HMI Design			Intralogistik, Design & Management				
2.7	Rolle des LAB für die Forschung					Forschungso	objekt							Factor die	e onderzoe	ek mogelijk m	aakt		
2.8	Forschungstehmen	Produk	tionsmanage	ment & Org	anisation	Ressourceneffizienz			Lean M	Lean Management Automatisierung C			PPS	Verände	erbarkeit	НМІ	Didaktik		

Studienprogramme und das EQR-Niveau jedes Programms mit Bezug zum LAB:

Beschreibung der Beziehung zwischen jedem Studienprogramm und dem LAB:

PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Service	Service	Produktlebenszyklu s
3.2	LAB Lebenszyklus	Investitionsplan ung	Fabrikkonzept	Prozessplanun g	Hochlauf	Fertigung	Montage	Service	Wartung	LAB Lebenszyklus
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequenzierung	Produktions termin		Fertigung	Montage	Service	Kommissionierung Verpackung	& Versand
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle	Prüfung	Fertigung	Montage	Service	Wartung	Modernisierung
3.5	Indirekte Funktionen	SCM	Vertrieb	Eink	kauf	HR	Finazen/Co	ntrolling		QM
3.6	Materialfluss		Kontinuierliche Pr	oduktion				Diskrete	efertigung	
3.7	Prozesstyp	Mass	senproduktion	Serienpr	oduktion	Kle	inserienfertigu	ng	Kle	nserienfertigung
3.8	Fertigungsorganisation	Ortsgebi	undene Fertigung	Werkbank	fertigung		Werkstattfert	igung	w	erkstattfertigung
3.9	Automatisierungsgrad		Manuell	Teilaut	omatisiert/hybrid	de Automatisierung			Vollautomat	sch
3.10	Fertigungsmethoden	Schneiden Trad. Primäre Form		mgebung	Additive Fertigung	Additive Fert	tigung Fügen	Beschick	htung Änderung	Materialeigenschaften
3.11	Fertigungstechnologien		Physisch			Chemisch			Biologisc	h

Spezifisches Equipment, das in den LABs genutzt wird:

EINSTELLUNGEN

4.1	Lernumgebung	Rein physikalisch (Planung + Ausführung)	Physisch u	nterstützt durch digitale iehe "IT-Integration")	Physisch, viri	tuell erweitert	Rein virtuell (Planung + Ausführung)	
4.2	Umgebungsskala		Verkleine	ert		Lebens	groß	
4.3	Arbeitssystemebene	Arbeitsort	А	rbeitssystem	W	erk	Netzwerk	
4.4	Enablers für Verädnerbarkeit	Mobilität	Modularität	Kompatibilitä	t	Skalierbarkeit	Universalität	
4.5	Veränderbarkeitsdimen sionen	Layout & Logistik	Produktmerk male	Produktdesign		Technologie	Produktmengen	
4.6	IT-Integration	IT vor SOP (C <i>i</i> Simulati		IT nach SOP (PPS, EF	RP, MES)	IT nach Produktion (CRM, PLM.		

Zu welchem Zweck werden verschiedene IT-Integrationen eingesetzt:

PRODUKT |

5.1	Material		Materie	ell (physisches	produkt		Ir	nmateriell (Ser	vice)	
5.2	Produktform		Stück	gut		Schütte	gut	Strömu	ngsrodukte	
5.3	Produktherkunft	Ei	gene Entwicklun	g	Entwi	cklung durch Teilne	ehmer	Externe	Entwicklung	
5.4	Marktfähigkeit des Produktes	Auf	dem Markt verfüg	bar	Am Markt v	erfügbar, aber nich vereinfacht	t didaktisch	Nicht auf dme Markt verfügba		
5.5	Produktfunktionalität	Funk	tionsfähiges Prod	dukt		ch angepasstes Pro schränkter Funktio			on / Anwendung Deonstration	
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon T entwicl		Annahme von Aufträgen		
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nach	n teilnehmer	Bestimmt (durch Aufträge	
5.8	Anzahl der Komponenten	1 Komponente	2-5 Komponenten	6-20 Komյ	oonenten	21-50 Komponenten	51-100 Kon	nponenten	> 100 Komponenten	
5.9	Weitere Verwendungen des Produktes		rwendung/- ertung	Ausst	ellung	Werbegeschenk	Ver	kauf	Entsorgung	

Further description of the products manufactured in the LAB:

DIDAKTIK

6.1	Kompetenzklassen	Fach- Methodenkor		Soziale & kon Kompe	mmunikative etenzen	Persönlichke	itskompetenzen	Handlungs- und umsetzungsorientierte Kompetennzen			
6.2	Dimensionen Lernziele	Kogn	iitiv		Affektiv			Psycho-m	otorisch		
6.3	Lernszenariostrategien	Anweisung		Vorführung		Geschloss	enes Szenario	C	offenes Szenari	io	
6.4	Art der lernumgebung	Greenfiel	d (Entwicklung	der Fabrikumg	gebung)	Brownfi	eld (Verbesserun	g der besteher	nden Fabrikum	gebung)	
6.5	Kommunikationskanal	Lern	en vor Ort (in F	abrikumgebun	ng)	Fernverbindung (zur Werksumgebung)					
6.6	Grad an Autonomie	Beauft	ragt	Selbs	tgesteuert/-re	guliert	S	Selbstbestimm	t/-organisiert		
6.7	Rolle des Trainers	Präsentator	Mode	erator	Coach				Ausbilder		
6.8	Art der Ausbildung	Lernprogramm	Praktische	r Laborkurs	Sen	ninar	Works	hop	Projektarbeit		
6.9	Standardisierung von Schulungen	:	Standardisierte	Schulungen			Individ	duelle Schulun	gen		
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus	s (en bloc)		hsel mit nen teilen	Bedarfsor	ientiert	Dan	nach	
6.11	Auswertungsstufen	Feedback der teilnehmer	Lernen der	Teilnehmer	Transfer in	reale Fabrik	Wirtschaftlcihe der Sch	•	return on tra	ainings / ROI	
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstes	t (mündlich)	Schriftlicher Bericht	Mündlcihe Präsentation		Praktische Prüfung		Keine	

Spezifische Kompetenzen, die im Labor geschult/mit den Technologien im LAB trainiert werden:

Im Labor trainierte Fähigkeiten/mit den Technologien im LAB trainierte Fähigkeiten:

Verwendeter Lehrplan:

METRIK

7.1	Anzahl an Teilnehmern pro Schulung	1-5 Teilnehmer	5-10 Teilnehmer	10-15 Teilnehmer	15-30 Teilnehmer	30> Teilnehmer			
7.2	Anzahl an standardisierten Schulungen	1 Training	2-4 Trainings	5-10 Tra	ainings	> 10 Trainings			
7.3	Durchschnittliche Dauer einer Schulung	≤ 1 Tag	> 1 Tage bis ≤ 2 Tage	> 2 Tage bis ≤ 5 Tage	> 5 days bis ≤ 10 Tage	> 10 Tage bis ≤ 20 Tage	> 20 Tage		
7.4	Teilnehmer pro Jahr	< 50 Teilnehmer	50-200 Teilnehmer	201-500 Teilnehmer	501-1000 Teilnehmer	> 1000 Teilnehmer			
7.5	Kapazitätsauslastung	< 10%	> 10 bis ≤ 20%	> 20%bis ≤ 50%	> 50% bis ≤ 75%	> 75%			
7.6	LABgröße	≤ 100 qm	> 100 qm bis ≤ 300 qm	> 300qm bis ≤ 500qm >500 qm bis ≤ 1000 qm		> 1000 qm			
7.7	FTE im LAB	< 1	2-4	5-9 10-15		>15			

WEITERE INFORMATIONEN UND VERBESSERUNGSASPEKTE

8.1	Weitere Informationen	Bilder	Video
8.2	Aspekt zur Verbesserung	Technisch	Methodologisch

FAZIT

Die Beschreibung von LABs ist ein hervorragender Ansatz, um ein Verständnis für die LABs von Berufsbildungszentren zu bekommen. Es ist möglich, LABs mit diesem Modell auf nicht zeitaufwändige Weise umfassend zu beschreiben und darzustellen. Dieses Modell ist vielleicht von noch größerem Nutzen in der heutigen Zeit, in der das Reisen verboten ist. Es macht es einfach, Informationen über LABs zu speichern und diese auszuwerten, um neue Perspektiven und Lernergebnisse zu erhalten. Dieses Modell wird auf der kommenden EXAM 4.0 Plattform verwendet werden, was zu einer großen Sammlung von beschriebenen LABs führt, daher kann dieses Modell verwendet werden, um einen Überblick über den Status von LABs in Europa zu erhalten. Das Modell basiert, wie bereits erwähnt, auf einem Modell zur Beschreibung von Lernfabriken, wurde aber an die Ziele von EXAM 4.0 angepasst. Das EXAM 4.0 Modell ist daher geeignet, um sowohl reguläre LABs als auch Lernfabriken zu beschreiben. Die Informationen über alle LABs werden ausgewertet, um die Struktur des ultimativen EXAM 4.0 LABs für die Berufsbildung in Europa zu definieren. Das Modell kann helfen, industrielle Bildungstrends auf Berufsbildungsebene in Europa zu erkennen und zu sehen, ob es Maßnahmen gibt, die ergriffen werden müssen.

BESCHREIBUNG DER VORHANDENEN LABS – LABS DER EXAM4.0 PARTNER

Curt Nicolin Gymnasiet - Schweden

Laborname:
Curt Nicolin Gymnasiet Workshop
■ Allgemeines Ziel/Zweck (kurze Zusammenfassung):
Industry related education, focused on industrial demands from companies in our region.
Jahr:
2014
Laborgröße (qm):
1150

Erster Abschnitt - Allgemeine Beschreibung, Übersichtstabeelle

Die nachfolgende Übersichtstabelle wurde erstellt, um allgemeine Informationen über eine bestimmte Lernumgebung, die AM LABs 4.0, zu präsentieren. Weitere Informationen über die betreffenden AM 4.0 LABs werden zusätzlich durch das Modell der Fragen und Tabellen im nachfolgenden Abschnitt beschrieben.

	Name of the LAB			Curt Nicolin Gym	ınasiet Workshop	1			MAIN PURPOSE			
	VET/HVET centre			Curt Nicolii	n Gymnasiet				Education		х	
GENERAL INFORMATION	Floor space of the lab (sqm)			11	50				Training	х		
	Main topic/learning content		Machining, C	CNC machining, robotic	cs, Additive Manufa	cturing, Welding		Re	esearch/Applied innovation		-	
	I4.0 related technologies		F	Additive Manufacturing	, Cloud Computing	, Mobile technolog	gies, Robotics,	M2M, Mobile, Sensors/Ad	tuators, RFID			
	Learning content			Machine lea	arning such as CNC	machining, Addit	ive Manufacturi	ing, conventional lathe/mill	onal lathe/milling			
PURPOSE	Secondary purpose			P	roduction managen	nent, Safety, Sma	art maintenance	e, Lean Production	oduction			
	LAB type		Specific			Mixed			Learning Factory			
		Na	me of the programme	s carried out on the Lat		EQF Level	Lab hours	N° subjects on the lab	Hour/Week x n° of weeks	Nº students (3)		
			Service and Mainte	enance Technology		4	400	4	11x35	36	ô	
			Product and	d Machinery		4	400	4	11x35	22	2	
LEARNING CONTENTS	Learning programmes/study programmes/levels		Welding t	echnique		4	400	4	11x35	25	5	
	h 2		Electricity and En	nergy Programme		4	300	3	9x35	48	8	
			Technical I	Production		4	150	2	4x35	39	э	
		TE4 Technical Produ	action (engineering)	TE4 Design and Pro (engine		5	100	1	3x35	15	5	
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell	19	
	Category of cell	Electrical assembly	Lathes & Mills	CNC	Additive Manufacturing	Robotics	Welding	Measuring Machine	Water Cutting Machine	VR//	AR	
	Nº machines	16	11	7	5	4	11	1	1	10	o	
SETTINGS	I4.0 Enabler technologies used and	Robotics	Additive Manufacturing	Cloud	CPS	Mobile/Tablet	AR/VR	Big data analytics	Ai	loT/l	lloT	
	implementation level	Sensors/Actuators	RFID	M2M	Cybersecurity	Digital twin						

Spezifisches Labor: Ein Labor, das entworfen und eingerichtet wurde, um eine bestimmte Technologie zu lehren/zu lernen. Zum Beispiel Additive Manufacturing LABs, Robotik LABs, IoT LABs (didaktische LABs von Festo, SMC und anderen) usw.

Gemischtes Labor: Der Hauptzweck des Labors ist nicht eine (l4.0) spezifische Technologie, sondern diese Technologien werden zur Ergänzung der Hauptaktivität eingesetzt. Das kann sein: Zerspanungs-LABs mit nachgerüsteten Maschinen, die Sensoren und Datenerfassungssysteme enthalten, Metallumformungs-LABs, in denen Cobots/Roboter implementiert sind usw.

Lernfabrik: Eine LF ist eine Lernumgebung, die eine reale Produktion darstellt, in der reale Produkte hergestellt werden.

Lernprogramme: Die Lernaktivitäten, die in den LABs durchgeführt werden, sind in der Regel Teil eines umfassenderen Programms. Der Name des Programms und sein EQR-Niveau sind gekennzeichnet. Die Stunden beziehen sich auf die Stunden, die für die Aktivitäten im Labor aufgewendet werden.

Die Anzahl der Themen bezieht sich auf die verschiedenen Themen oder Bereiche, die von einer Gruppe im Labor behandelt werden können. Sie können als die Anzahl der separaten Schulungsaktivitäten betrachtet werden.

Anzahl der Schüler und Gruppen pro Woche im Labor. 3x20 bedeutet 3 Gruppen mit je 20 Teilnehmern. Dies ist die maximale Anzahl von Schülern/Gruppen, die gleichzeitig in den LABs arbeiten können.

Zelle/Bereich: Teil des Labors, in dem eine Anzahl von Maschinen gruppiert ist. Zellen können in 2 Typen unterteilt werden:

- a) Zellen mit Maschinen mit ähnlichen Eigenschaften.
- b) Zellen mit einer aufeinanderfolgenden Anzahl von Maschinen, in denen aufeinanderfolgende Operationen durchgeführt werden.

Vollstär Nutzungsgrad: impleme		Implementierung geplant	Nicht implementiert
--------------------------------	--	----------------------------	---------------------

Zweiter Abschnitt – Detaillierte Beschreibung

BETRIEBSMODELL

	Betreiber		Akademische Institu	ition				Gewinnorientierter Betreiber							
1.1	Betreiber	Universitäty	Hochschule	ВА	Berufs	sschule/Gymn	asium	Kammer Gewerkschaf Arbeitgeberv t erband			Industrielles Netzwerk	Beratung	es Unternehme		
1.2	Trainer	Professor	Forscher		Studentisc	he Hilfkraft		Technsich	ner Experte/Int	. Spezialist	Berater	agoge			
1.3	Entwicklungen		Eigene Ent	wicklung		Extern geförderte Entwicklung						Externe Entwicklung			
1.4	Anfangsfinanzierung		Interne	Mittel		Öfentliche Mittel						Geschäftsmitte	el		
1.5	Laufende Finanzierung		Interne	Mittel		Öfentliche Mittel					Geschäftsmittel				
1.6	Förderkontinuität	Kurzfri	stige Finanzierung z.B.	: einzelne Veranstalt	tungen)	ungen) Mittelfristige Förderungen (z.B. Projekte und Programme <					nre) Langfristige Förderung (Prohejte und Programme > 3 Jahre)				
4.7	Geschäftsmodell für		C	Offene Modelle				Canablassan	Modelle (Train	o our für Einze	Juntarnahmar				
1.7	1.7 Schulungen		1 odelle	Kursge	ebühren	Geschlossene Modelle (Trainingsprogramme i					ie nui idi Ellize	für Einzelunternehmen			

Beschreibung von Finanzierungsmethoden:

Das Curt Nicolin Gymnasiet ist eine gemeinnützige, freie Schule aus Schweden, was in diesem Fall bedeutet, dass die regionale Regierung 49 % der Aktienanteile besitzt und die regionalen Industrieunternehmen 51 % besitzen. Das bedeutet, dass das Curt Nicolin Gymnasiet sowohl von der Regierung als auch von den Unternehmen Finanzmittel erhält. Die Regierung besitzt, wie bereits erwähnt, nur 49 % der Anteile, was bedeutet, dass das Curt Nicolin Gymnasiet, im Gegensatz zu vielen anderen schwedischen Schulen, an einkommensschaffenden Veranstaltungen, Projekten und Programmen teilnehmen kann.

ZWECK & ZIELSETZUNGEN

2.1	Hauptzweck		Au	sbildung					Berufst	oildung					onderzoek					
2.2	Sekundärer Zweck		Testumgebu	ing/Pilotumg	ebung		Indus	trieproduktion				Innovat	ionstransfer		Anzeige für Produktion					
				Studierend	de				Art	eitnehmer				·						
2.3	Ziepgruppen für Bildung und Training	Schüler	Bachelor	Master	Doktoranden	Auszubilden	Fachkraft	Ausgebildete	Eachkraft	Fachkraft Ungelernte		manage		ınagers		ner Freiber	ıfler .	r Arbeitslos	Öffentlich zugänglich	
			bachelor	iviaster	Doktoranden	de Fachkraft Unteres Mittleres To					Top- Management									
2.4	Gruppenkonstellati on		ho	mogeen		heterogen (Wissensstand, Hierarchie, Studierende + M						nde + Mitarbei	ter, etc.)							
2,5	Zielindustrien		Maschinen	- und Anlage	nbau	Automobil Lo			ogistik Transport			Transport		FMCG		Luft- und	d Raumfahrt			
2.5	Zielindustrien		Chemis	che Industri	ie		Elektronik		Konstruktion		ruktion Versicherunger		Versicherungen/Bankwesen		Textil		til .			
2.6	Fachbezogener leminhalt	Produktio geme Organis	ent &	Ressource	eneffizienz	Le	Lean-Management			Automatisierung CPPS			Abeitssys staltu		НМІ	Design		ogistik, Desig Management	n &	
2.7	Rolle des LAB für die Forschung						chungsobjekt								factor die or	iderzoek mo	gelijk ma	aakt		
2.8	Forschungstehmen	Produl	Produktionsmanagement & Organisation Ressourceneffizienz					effizienz	Lean Management Automatisierung				ierung C	PPS Ve	eränderbarke	t H	MI D	idaktik		

Studiengänge und deren EQR-Niveau in Bezug auf das LAB:

Service- und Wartungstechnik, Produkt und Maschinen, Schweißtechnik sind alle Untergruppen des Studienprogramms namens Industrietechnisches Programm, das ECF-Niveau dieser Programme ist 4.

Programm Elektrizität und Energie, EQF-Niveau ist 4.

Technische Produktion, das EQF-Niveau ist 4.

TE4 Technische Produktion und TE4 Design und Produktentwicklung, EQF-Niveau ist 5.

Berufliche Bildung für Erwachsene, EQF-Niveau ist 4.

Beschreibung der Beziehung dem Studienprogrammen und dem LAB:

Die Programme, die die meiste Zeit im LAB verbringen, sind die industriellen technischen Programme und das Elektrizitäts- und Energieprogramm.

Technische Produktion und die TE4-Programme beinhalten mehr theoretisches Denken und kombinieren daher theoretische und praktische Ausbildung.

Andere Studiengänge wie die eher theoretischen technischen Programme und das Gesundheits- und Sozialpflegeprogramm können jeden Freitagnachmittag als Wahlfach Unterricht im LAB haben.

PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Servi	се	Service)	Produktlebenszyklus
3.2	LAB Lebenszyklus	Investitionsplanung	Fabrikkonzept	Prozessplanung	Hochlauf	Fertigung	Montage	Servi	се	Wartun	g	LAB Lebenszyklus
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequenzieru ng	Produktionsplanung & - terminierung		Fertigung	Montage	Servi	Service Kommission Verpack			Versand
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle Prüfung		Fertigung	Montage	Servi	Service Wartung		g	Modernisierung
3.5	Indirekte Funktionen	SCM	Vertrieb	Einkauf HR Finazen/Co			/Controlling	trolling QM			М	
3.6	Materialfluss		Kontinuierliche Pr	roduktion	diskrete fertigung							
3.7	Prozesstyp	Massenp	roduktion	Serienpro	oduktion	uktion Kleinserienfertigung Kleinserienfertigung				inserienfertigung		
3.8	Fertigungsorganisation	Ortsgebunde	ene Fertigung	Werkbank	fertigung Werkstattfertigung				Werkstattfertigung		erkstattfertigung	
3.9	Automatisierungsgrad	Mar	nuell	Teila	utomatisiert/hybride Automatisierung			Vollautomatisch				
3.10	Fertigungsmethoden	Schneiden	Trad. Primäre F	ormgebung	Additive Fertigung				Mate	Änderung erialeigenschaften		
3.11	Fertigungstechnologien		Physisch			Chemisch biologisch						

Spezifische Geräte, die im LAB verwendet werden:

Das Curt Nicolin Gymnasiet will auf dem neuesten Stand der Technik sein. Maschinen wie 3D-Drucker sind daher ein wichtiger Bestandteil des Programms. Die größte Eigentümerfirma der Schule investiert stark in EOS Metall-SLM-Drucker. Diese Maschinen sind an der Schule nicht zu haben. Das Curt Nicolin Gymnasiet hat daher in einen EOS-formiga P110 SLM-Drucker investiert, um die Nutzung dieser Metalldrucker bestmöglich zu simulieren.

Außerdem gibt es heute 4 Kunststoff Fused Filament Fabrication 3D-Drucker im LAB. Curt Nicolin Gymnasiet wird in naher Zukunft in neue Fused Filament Fabrication 3D-Drucker investieren, die mit Kohlefasermaterialien drucken.

Das Curt Nicolin Gymnasiet hat 4 Roboter; diese sind Standard, Cobot und AGV. Die Schule hat auch eine große Auswahl an FESTO-Automationsstationen.

Die Schule investiert derzeit in Virtual und Augmented Reality und hat heute 10 verschiedene Headsets. Das Curt Nicolin Gymnasiet erwägt derzeit den Kauf von 30 neuen Headsets, um die Geräte in größeren Gruppen zu nutzen und so mehr Schüler gleichzeitig unterrichten zu können.

Verschiedene der Eigentümerfirmen konzentrieren sich auf CNC-Maschinen, einer der Unterprogramme des industriellen technischen Programms konzentriert sich hauptsächlich auf CNC-Maschinen. Die Schule verfügt daher über 8 verschiedene CNC-Maschinen und hat vor kurzem eine neue 5-Achsen Haas Fräsmaschine erhalten.

Es gibt verschiedene konventionelle Fräsmaschinen, Drehbänke und Ständerbohrmaschinen im LAB. Diese Maschinen werden hauptsächlich für neue Studenten verwendet, um eine gute Grundlage zu schaffen, bevor die Ausbildung mit fortgeschrittenen Maschinen und fortgeschrittenen Produktionsmethoden beginnt.

EINSTELLUNGEN

4.1	Lernumgebung	Rein physikalisch (Physisch unterstützt durch Planung + digitale Fabrik (siehe "IT- Integration")			Physisch, virt	tuell erweitert	Rein virtuell (Planung + Ausführung)
4.2	Umgebungsskala		Verkleinert Lebensgroß				
4.3	Arbeitssystemebene	Arbeitsort	Arbe	peitssystem Werk Netzw			
4.4	Enablers für Verädnerbarkeit	Mobilität	Modularität	Kompatibilität		Skalierbarkeit	Universalität
4.5	Veränderbarkeitsdimen sionen	Layout & Logistik	Produktmerk male	Produktdesign		Technologie	Produktmengen
4.6	IT-Integration	IT vor SOP (CAD, CA	M, Simulation)	IT nach SOP (PPS, ERP, MES)		IT nach Produktion (CRM, PLM)	

Zu welchem Zweck werden verschiedene IT-Integrationen eingesetzt:

Die Schüler des Curt Nicolin Gymnasiet nehmen oft an Projekten teil, von der Idee bis zum Endprodukt. IT-Integrationen wie CAD, CAM, Simulation und Software für den 3D-Druck sind bei den Projekten unerlässlich. Diese Programme sind wichtig, um ein Produkt sowohl entwerfen als auch herstellen zu können.

5.1	Material	Materiell (physisches produkt in							nmateriell (Service)	
5.2	Produktform		Stückgut				tgut	Strömungsrodukte		
5.3	Produktherkunft	Ei	gene Entwicklu	ng	Entwicklung durch Teilnehmer			Externe Entwicklung		
5.4	Marktfähigkeit des Produktes	Am Markt verfügbar, aber nicht die vereinfacht					nt didaktisch	Nicht auf dme Markt verfügbar		
5.5	Produktfunktionalität	Funktionsfähiges Produkt Didaktisch angepasstes Pro eingeschränkter Funktion						Ohne Funktion / Anwendung nur zur Deonstration		
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon entwic		Annahme von Aufträgen		
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nac	h teilnehmer	Bestimmt durch Aufträge		
5.8	Anzahl der Komponenten	1 Komponente	2-5 Komponenten 	6-20 Kom	ponenten 21-50 Komponenten 51-100 Kor			mponenten	> 100 Komponenten	
5.9	Weitere Verwendungen des Produktes		wendung/- ertung	Ausst	ellung Werbegeschenk Verkauf		kauf	Entsorgung		

Weitere Beschreibung der Produkte, angefertigt im LAB:

Die im Curt Nicolin Gymnasiet hergestellten Produkte sind nicht auf dem Markt erhältlich. Die Eigentümerfirmen bestellen jedoch gelegentlich bestimmte Produkte, diese Produkte werden in den meisten Fällen 3D-gedruckt.

Die im LAB hergestellten Produkte variieren fast jeden Monat, da die Schüler in verschiedenen Projekten arbeiten, von der Idee bis zum Produkt. Die Studenten wählen also aus, was sie herstellen wollen, wenn der Herstellungsprozess den Kriterien der jeweiligen Lehrveranstaltung entspricht. Die Produkte werden in der Schule ausgestellt, als Give-aways auf Messen und Veranstaltungen verwendet und in einigen Fällen können die Schüler das Produkt mit nach Hause nehmen.

Beispiel für Produkte, die im LAB hergestellt werden:

- 3D-gedruckte Prototypen für Firmen oder größere Projekte an der Schule.
- 3D-gescannte Objekte.
- Stirlingmotoren, die auf CNC-Maschinen hergestellt werden.
- Roboter, für die jährlich stattfindenden Roboterwettbewerbe an der Schule.
- Ergänzungen für die Roboter an der Schule, hergestellt in verschiedenen Maschinen.
- Verschiedene kundenspezifische Grills.
- Ergänzungen für die Maschinen über die CNC-Maschinen.

6.1	Kompetenzklassen		Fach- und Soziale & ko odenkompetenzen Kompe		mmunikative tenzen	Persönlichkeitskompetenz en		Handlungs- und umsetzun Kompetennzer			
6.2	Dimensionen Lernziele	Kognitiv Aff			Affektiv			Psycho-motorisch			
6.3	Lernszenariostrategien	Anweisung		Vorführung		Geschlosse	Geschlossenes Szenario			o	
6.4	Art der lernumgebung	Greenfield	d (Entwicklung	der Fabrikumg	ebung)	Brownfield (Verbesserung der bestehenden Fabrikumgebung)					
6.5	Kommunikationskanal	Lern	Lernen vor Ort (in Fabrikumgebung) Fernverbindung (zur Werksumgebung)								
6.6	Grad an Autonomie	Beauft	Beauftragt Selbstgesteuert/-reguliert Selbstbestimmt/-organisiert								
6.7	Rolle des Trainers	Präsentator	Mode	erator	or Coach			Ausbilder			
6.8	Art der Ausbildung	Lernprogramm	Praktische	raktischer Laborkurs Semin			ar Workshop			tarbeit	
6.9	Standardisierung von Schulungen		Standardisierte Schulungen				Individuelle Schulungen				
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus	Voraus (en bloc)		chsel mit Bedarfs		orientiert Dan		ach	
6.11	Auswertungsstufen	Feedback der teilnehmer	Lernen der	Teilnehmer	eilnehmer Transfer in reale		roalo Fabrik		he Auswirkung shulung		
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstes	t (mündlich)	Schriftlicher Bericht Mündlcihe Präsentation		Praktisch	Praktische Prüfung			

Spezifische Kompetenze, die im Labor geschult/mit den Technologien im LAB trainiert werden:

Querschnittskompetenzen: Innovation, Kreativität, Teamarbeit, Flexibilität, Entscheidungsfindung, Zielstrebigkeit, Selbstorganisation.

Methodische Kompetenzen: Analytisches Denken, strategisches Denken, vernetztes Denken, Präsentationskompetenzen.

Fachliche Kompetenzen: Technisches Fachwissen, IT-Kenntnisse, Projektmanagement, Qualitätsmanagement und Betriebshygiene.

Am Curt Nicolin Gymnasiet arbeiten die Schüler häufig in Projekten, die oben genannten Kompetenzen werden daher über verschiedene Projekte in den Unterricht einbezogen.

Im Labor geschulte Fertigkeiten/geschulter Umgang mit den Technologien im LAB:

Additive Manufacturing spielt eine wichtige Rolle in der Ausbildung am Curt Nicolin Gymnasiet. Fertigkeiten im Zusammenhang mit dem 3D-Druck sind daher unerlässlich. Beispiele für solche Fähigkeiten sind:

- 3D-Konstruktion
- 3D-CAD: Entwerfen, Reparieren, Modifizieren von 3D-CAD-Daten
- Finishing: Zusammenbauen, Lackieren, Schleifen, Verbessern eines 3D-Modells
- Wartung: Kalibrieren, Reparieren und Testen von 3D-Druckern
- Material-Handhabung

Zahlreiche weitere Fertigkeiten, die im LAB trainiert werden, sind zum Beispiel Schweißen, Teilevermessung, Strahlen, Färben und verschiedene IKT-Fertigkeiten.

Curriculum used:

Läroplan, examensmål och gymnasiegemensamma ämnen för gymnasieskola 2011 (Gy 2011)

https://www.skolverket.se/undervisning/gymnasieskolan/laroplan-programme-och-amnen-i-gymnasieskolan/laroplan-gy11-for-gymnasieskolan

METRIK

7.1	Anzahl an Teilnehmern pro Schulung	1-5 Teilnehmer	5-10 Teilnehmer	10-15 Teilnehmer	15-30 Teilnehmer	30> Teilnehmer	
7.2	Anzahl an standardisierten Schulungen	1 Training	2-4 Trainings	5-10 Trainings		> 10 Trainings	
7.3	Durchschnittliche Dauer einer Schulung	≤1 Tag	> 1 Tage bis ≤ 2 Tage	> 2 Tage bis ≤ 5 Tage	>5 days bis ≤10 Tage	> 10 Tage bis ≤ 20 Tage > 20 Tag	
7.4	Teilnehmer pro Jahr	< 50 Teilnehmer	50-200 Teilnehmer	201-500 Teilnehmer	501-1000 Teilnehmer	>1000 Teilnehmer	
7.5	Kapazitätsauslastung	< 10%	> 10 bis ≤ 20%	> 20%bis ≤ 50%	>50% bis ≤75%	> 75%	
7.6	LABgröße	≤100 qm	> 100 qm bis ≤ 300 qm	> 300qm bis ≤ 500qm	>500 qm bis ≤ 1000 qm	> 1000 qm	
7.7	FTE im LAB	<1	2-4	5-9	10-15	>15	

WEITERE INFORMATIONEN UND ASPEKTE DER VERBESSERUNG

8.1	Weitere Informationen	Bilder	Video
8.2	Aspekt zur Verbesserung	Technisch	Methodologisch

Weitere Informationen (Link zum Video):

https://www.youtube.com/watch?v=ZO6vOLSKpbo

Aspekte zur Verbesserung:

Das Curt Nicolin Gymnasiet ist stets bestrebt, die neuesten Technologien in seinen Bildungsprogrammen zu implementieren, also Industrie 4.0-Technologien. Allerdings werden nicht alle Industrie 4.0-Technologien an der Schule ausgebildet. Dies ist ein Aspekt, der verbessert werden könnte, also die Implementierung von mehr I4.0-Technologien in die Ausbildung sowie die Verbesserung der Ausbildung innerhalb der Technologien, die bereits an der Schule vorhanden sind.

Miguel Altuna LHII LAB - Spanien

Machining LAB

Einführung:

Dieses Modell wird von Partnern des Konsortiums mit Unterstützung von Unternehmen und assoziierten Partnern und dem Modell zur Beschreibung von Lernfabriken (Abele, Metternich und Tisch 2019) erarbeitet, um bestehende und zukünftige lernende cyber-physische Räume, AM LABs 4.0, und deren Eigenschaften zu beschreiben.

Das Modell wurde entwickelt, um eine gemeinsame Struktur für Beschreibungen von AM LABs 4.0 zu schaffen. Das Beschreibungsmodell umfasst Aspekte der LABs wie physische Merkmale, Ausstattung, IKT-Anwendungen, I4.0-Technologien, Methodologien, Lernstrategien usw.

Partner, Organisationen und Institutionen können von den Beschreibungen der AM LABs 4.0 profitieren, indem sie Informationen über verschiedene lernende cyber-physische Räume auswerten.

Alle Konsortialpartner haben ihre AM LABs 4.0 mit Hilfe des Modells beschrieben, um eine standardisierte Struktur für die Beschreibung von cyber-physischen Räumen zu haben, die für die Berufsbildung und Stakeholder in ganz Europa von Vorteil ist. Die Struktur macht das Modell für Nutzer außerhalb des EXAM-Konsortiums lesbar und ist für andere Nutzer einfach zu verwenden, wenn sie ihre/neue AM LABs 4.0 beschreiben.

In den folgenden Abschnitten wird eine detaillierte Beschreibung einer Reihe von Referenz-LABs gezeigt. Alle LABs werden mit der folgenden Struktur beschrieben:

- Allgemeine Informationen
- Funktionsmodell
- Zweck und Zielsetzung
- Ablauf
- Einstellung
- Produkt
- Didaktik
- Metriken
- Weitere Informationen & Aspekte zur Verbesserung

Laborname:

Machining and mechanical assembly LAB

Allgemeiner Zweck/Ziel (kurze Zusammenfassung):

Das allgemeine Ziel dieses Labors ist die Planung, Terminierung und Steuerung der Fertigung durch Bearbeitung und Montage von Investitionsgütern, basierend auf der Dokumentation des Prozesses und der Spezifikationen der herzustellenden Produkte, die Sicherstellung der Qualität des Managements und der Produkte sowie die Überwachung der Systeme zur Vermeidung von Arbeitsrisiken und des Umweltschutzes. All dies beinhaltet Digitalisierungskompetenzen und Industrie 4.0-Methoden, die sich noch deutlicher an den Anforderungen der Industrie orientieren.

Diese Zielsetzung würde Aufgaben mit sich bringen wie:

- Bereiten Sie die Verfahren für die Montage und Wartung von Anlagen vor, indem Sie die Ressourcen, die notwendigen Zeiten und die Kontrollsysteme definieren.
- Überwachen und / oder Ausführen der Bearbeitungs-, Montage- und Wartungsprozesse unter Kontrolle der Zeiten und der Qualität der Ergebnisse.
- Überwachen Sie die Programmierung und Einstellung von Maschinen mit numerischer Steuerung, Robotern und Manipulatoren für die Bearbeitung.
- Planen Sie die Produktion mit Hilfe von computergestützten Verwaltungstechniken und -werkzeugen.
- Bestimmen Sie die notwendige Bevorratung durch ein intelligentes Lager.
- Sicherstellen, dass die Fertigungsprozesse mit den festgelegten Verfahren übereinstimmen.
- Verwalten Sie die Wartung der Ressourcen in meinem Bereich.

Das LAB kann gleichzeitig von Studenten aus verschiedenen Studiengängen genutzt werden. Studierende aus den folgenden Studiengängen sind die Hauptnutzer:

- Höherer Techniker in Fertigungsplanung Mechanische Fertigung (EQF 5),
- Höherer Techniker in Fertigungsplanung Mechanik (EQF 5)
- Höherer Techniker in Industriemechanik (EQF-Stufe 5)
- Techniker in Zerspanungstechnik (EQF-Stufe 4),

Im Zerspanungslabor, neben der Erstausbildung, wird auch für verwendet:

- Spezialisierungsprogramme
- Ausbildung f
 ür die Beschäftigung
- Maßgeschneiderte Ausbildung für KMU
- Verbesserungs- und Wiederverwertungsprogramme
- Tkgune Angewandte Innovation und technische Dienstleistungen für KMUs
- Showroom für Unternehmen

Laborgröße (qm): 2000

In den folgenden Abschnitten wird eine detaillierte Beschreibung der LABs mit folgendem Aufbau gezeigt:

- Allgemeine Informationen
- Betriebsmodell
- Zweck und Zielsetzung
- Ablauf
- Einstellung
- Produkt
- Didaktik
- Metrik

■ Allgemeine Informationen - Übersichtstabelle

	Name of the LAB			Machini	ng Lab				MAIN PURPOSE		
	VET/HVET centre			Miguel Al	tuna LHII				Education		х
GENERAL INFORMATION	Floor space of the lab (sqm)			20	00				Training		х
	Main topic/learning content			Machining, Cf	NC machining			Re	esearch/Applied innovation		
	I4.0 related technologies				С	PS, data acquisiti	on, RFID, IIoT				
PURPOSE	Learning content			Machini	S	I lathe machining, let up of metal fo lechanical and ele	rming presses	achining, END, Grinding			
	Secondary purpose		Production management, Safety, I4.0 related topics, smart maintenance								
	LAB type		Specific			Mixed			Learning Factory		
		Nar	ne of the programmes	s carried out on the Lab		EQF Level	Lab hours	Nº subjects on the lab	Hour/Week x n° of weeks	Nº stude	ents (3)
		Product	ion management on	Mechanical Manufact	uring	5	198 126	2	6x33 6x21	3x 3x	
LEARNING CONTENTS	Learning programmes/study		Machining	technician		4	330 165 210	3	10x33 5x33 10x21	2x 2x	20 20
	programmes/levels		Industrial me	echatronics		5	165 168	2	5x33/8x21	2x 2x	
			Design in mechani	cal manufacturing		5	198	1	6x33	1x	15
			Precision c	old forging		5	-	1	-	1x	12
						_	_	_	_		
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cel	19
	Category of cell	CNC	Lathes	END	Grinding	Metal formig	Mechanical assembly	Electric assembly	-		
	Nº machines	12	20	4	6	12	5	6	-	-	
SETTINGS	I4.0 Enabler technologies used and	Robotics	Additive Manufacturing	Cloud	CPS	Mobile/Tablet	AR/VR	Big data analytics	Ai	loT/	lloT
	implementation level	Sensors/Actuators	RFID	M2M	Cybersecurity	Digital twin					

BETRIEBSMODELL

		A	kademische Ir	nstitution		Nicht-akademische Institution							Gewinnorientierter Betreiber	
1.1	Betreiber	Universitäty	Hochsc	hule	BA	Berufss	schule/Gy	/mnasium	Kammer	Gewerkschaft	Arbeitgeberv erband	Industrielles Netzwerk	Beratung	Produzierendes Unternehmen
1.2	Trainer	Professor	Forsch	ner		Studentisc	che Hilfkr	aft	Technsic	her Experte/Int.	Spezialist	Berater	Pä	dagoge
1.3	Entwicklungen		Eigene I	Entwicklung	9			Exter	n geförderte E	ntwicklung		Е	xterne Entwic	dung
1.4	Anfangsfinanzierung		Inter	ne Mittel					Öfentliche M	littel			Geschäftsmi	ttel
1.5	Laufende Finanzierung		Inter	ne Mittel					Öfentliche M	littel			Geschäftsmi	ttel
1.6	Förderkontinuität	Kurzfristige	Finanzierung z	.B.: einzelr	ne Veransta	lltungen)	Mittelfris	tige Förderung	gen (z.B. Proje	kte und Progran	nme <3Jahre)		ge Förderung rogramme > 3	
1.7	Geschäftsmodell für		C	Offene Mode	elle Geschlossene Modelle (Trainingsprogramme nur für Einzelunternehmen									
1.7	Schulungen	Club-M	Modelle		Kursgeb	oühren			Geschiosse	ene iviodelle (Tra	ınıngsprogram	me nur für Einz	eiuniemenme	11

Hinweis: In 1.7 Geschäftsmodelle für die Ausbildung gibt es verschiedene Modalitäten: Für Studenten im Erstausbildungsmodell sind die Programme staatlich finanziert. Für maßgeschneiderte Schulungen für Unternehmen ist es eine Kursgebühr. Wir verwenden auch geschlossene Modelle.

Dieses Labor befindet sich innerhalb eines Berufsbildungszentrums, das institutionalisierte, absichtliche und geplante Lernprozesse vermittelt und dessen Ergebnisse akkreditiert sind.

Beschreibung der Finanzierungsmethoden

Miguel Altuna ist ein öffentliches Berufsbildungszentrum, das dem Bildungsministerium des Baskenlandes untersteht, so dass die Aktivitäten des Zentrums hauptsächlich von der Abteilung für Berufsbildung finanziert werden.

Miguel Altuna plant und überwacht sein eigenes Budget und entscheidet unabhängig über die Verwendung der Ressourcen.

- Miguel Altuna wird hauptsächlich von der Regierung finanziert. Es ist jedoch erlaubt, Einkommen zu erwirtschaften und einzubehalten (z.B. durch den Verkauf von Trainingsdienstleistungen), um Investitionen, Forschung oder andere Aktivitäten zu finanzieren.
- Miguel Altuna hat als öffentliche Einrichtung bis zu einem gewissen Grad die Befugnis, selbstständig Verträge mit anderen Organisationen wie Unternehmen, Schulungsanbietern und Spendern abzuschließen, um z. B. Dienstleistungen oder Ausrüstung zu kaufen oder zu verkaufen. Es gibt Beschränkungen in Bezug auf die maximale Höhe der Verträge und auch die Art der Verträge.
- Miguel Altuna hat jedoch nicht die Befugnis, Kredite aufzunehmen, um z. B. Investitionen zu finanzieren.

WECK & ZIELSETZUNG

2.1	Hauptzweck		Aus	sbildung					Berufst	oildung					0	nderzoek		
2.2	Sekundärer Zweck		Testumgebur	ng/Pilotumg	gebung		Industri	eproduktion			Innov	ationstransfer			Anzeig	ge für Produl	ktion	
				Studierend	de				Ari	beitnehm	ier							
2.3	Ziepgruppen für Bildung und Training	Schüler	Bachelor	Master	Doktoranden	Augzubildanda	szubildende Fachkraft Ausgebilde Fachkraf					Managers		Unternehm	er Freit	berufler	Arbeitslos	Öffentlich zugänglich
			Bacrieror	iviastei	Doktoranden	Auszublideride	raciikiait	Fachkrat	ft Fac	chkraft	Unteres Management	Mittleres Management	Top- Manageme	nt				
2.4	Gruppenkonstellation		Ho	nogeen					heterogen (Wissensstand, Hierarchie, Studierende + Mitarbeiter, etc.)									
2.5	Zielindustrien		Maschinen-	und Anlage	enbau	Αι	Automobil			Log	istik	т	ransport		FMC	G	Luft- ui	nd Raumfahrt
2.0	Zieiiiiuustiieii		Chemis	che Industri	ie	EI	ektronik			Konstr	ruktion	Versicheru	ingen/Bankw	esen	Texti	il		
2.6	Fachbezogener leminhalt		onsmanag ent & isation.	Ressourc	ceneffizienz	Lean-N	Lean-Management				CPPS	Abeitssystem Itung	igesta F	-lMI De	sign		stik, Design & agement	
2.7	Rolle des LAB für die Forschung		•			Forschung							Factor die ond	erzoek mo	gelijk maakt			
2.8	Forschungstehmen	Produk	tionsmanager	ment & Orga	anisation	Res	zienz		Le	Lean Management Automatisierung			PPS Verä	nderbarkei	it HN	1I D	daktik	

Das allgemeine Ziel dieses Labors ist die Planung, Terminierung und Steuerung der Fertigung durch Bearbeitung und Montage von Investitionsgütern, basierend auf der Dokumentation des Prozesses und der Spezifikationen der herzustellenden Produkte, die Sicherstellung der Qualität des Managements und der Produkte sowie die Überwachung der Systeme zur Vermeidung von Arbeitsrisiken und des Umweltschutzes. All dies beinhaltet Digitalisierungskompetenzen und Industrie 4.0-Methoden, die sich deutlicher an den Anforderungen der Industrie orientieren.

Diese Zielsetzung würde Aufgaben wie die folgenden beinhalten:

- Bereiten Sie die Verfahren für die Montage und Wartung von Geräten vor, indem Sie die Ressourcen, die notwendigen Zeiten und die Kontrollsysteme definieren.
- Überwachen und / oder Ausführen der Bearbeitungs-, Montage- und Wartungsprozesse, Kontrolle der Zeiten und der Qualität der Ergebnisse.
- Überwachen Sie die Programmierung und Einstellung von Maschinen mit numerischer Steuerung, Robotern und Manipulatoren für die Bearbeitung.

- Planen Sie die Produktion mit Hilfe von computergestützten Verwaltungstechniken und -werkzeugen.
- Bestimmen Sie die notwendige Bevorratung durch ein intelligentes Lager.
- Sicherstellen, dass die Fertigungsprozesse mit den festgelegten Verfahren übereinstimmen.
- Verwalten Sie die Wartung der Ressourcen in meinem Bereich.

Das LAB kann gleichzeitig von Studenten aus verschiedenen Studiengängen genutzt werden. Studierende aus den folgenden Studiengängen sind die Hauptnutzer:

- Höherer Techniker in Produktionsplanung in der mechanischen Fertigung (EQF-Level 5).
- Höherer Techniker in der Fertigungsplanung Mechanik (EQF-Level 5).
- Höherer Techniker in Industriemechanik (EQF-Stufe 5).
- Techniker in der Zerspanungstechnik (EQF-Level 4).

Im Zerspanungslabor, neben der Erstausbildung, wird auch für verwendet:

- Spezialisierungsprogramme
- Ausbildung für die Beschäftigung
- Maßgeschneiderte Ausbildung für KMUs
- Verbesserungs- und Wiederverwertungsprogramme
- Tkgune Angewandte Innovation und technische Dienstleistungen für KMUs
- Showroom f
 ür Unternehmen

Beschreibung der Beziehung zwischen jedem Studienprogramm und der LAB

Alle Benutzer des Labors müssen das IoT-System verwenden, um Maschinen und Geräte zu buchen, die Verfügbarkeit der Einrichtungen zu prüfen und die entsprechenden Werkzeugsätze zu verwenden. Die Verwendung von RFID-Karten ist für alle Benutzer, einschließlich der Trainer und Mitarbeiter, obligatorisch. Auch alle Studenten müssen es nutzen, unabhängig vom EQR-Niveau ihrer Programme oder sogar Auszubildende aus Unternehmen, die an Weiterbildungsprogrammen teilnehmen.

Die Nutzung der Ausrüstung des Bearbeitungslabors kann für jede Gruppe, die mit verschiedenen Studiengängen verbunden ist, unterschiedlich sein.

Im Allgemeinen arbeiten Studenten der EQF4-Stufe an der Vorbereitung von Kompetenzen in Bezug auf die Herstellung von Teilen durch Bearbeitung, wobei verschiedene Verfahren und Ausrüstungen verwendet werden, von konventioneller Bearbeitung bis hin zu CNC.

In den Studiengängen der EQF5-Stufe führen sie neben den Aufgaben, die mit der Bearbeitung zusammenhängen, auch Management- und Planungsaufgaben aus wie

- Terminierung von Produktionen, Produktionsplanung, Qualitätskontrolle und Messverfahren, Wartungsplanung,
- Vorbereiten der Verfahren für die Montage und Wartung von Anlagen, Festlegen der Ressourcen, der notwendigen Zeiten und der Kontrollsysteme.
- Überwachen und / oder Ausführen der Bearbeitungs-, Montage- und Wartungsprozesse, Kontrolle der Zeiten und der Qualität der Ergebnisse.
- Überwachen Sie die Programmierung und Abstimmung von Maschinen mit numerischer Steuerung, Robotern und Manipulatoren für die Bearbeitung.
- Bestimmen Sie die notwendige Bevorratung durch ein intelligentes Lager.
- Sicherstellen, dass die Fertigungsprozesse mit den festgelegten Verfahren übereinstimmen. Angewandte Messtechnik
- Verwalten Sie die Wartung der Ressourcen in ihrem Bereich.

PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Service	Service	Produktlebenszyklus	
3.2	LAB Lebenszyklus	Investitionsplanung	Fabrikkonzept	Prozessplanung	Hochlauf	Fertigung	Montage	Service	Wartung	LAB Lebenszyklus	
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequenzier ung	Produktionsp terminie		Fertigung	Montage	Service	Kommissionierur & Verpackung	g Versand	
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle F	Prüfung	Fertigung	Montage	Service	Wartung	Modernisierung	
3.5	Indirekte Funktionen	SCM	Vertrieb	Einka	uf	HR	Finazen/C	Controlling		QM	
3.6	Materialfluss		Kontinuierliche I	Produktion				diskrete fe	ertigung		
3.7	Prozesstyp	Massenp	roduktion	Serienpro	duktion		Kleinserienfe	rtigung		Kleinserienfertigung	
3.8	Fertigungsorganisation	Ortsgebunde	ene Fertigung	Werkbankf	ertigung		Werkstattfer	tigung		Werkstattfertigung	
3.9	Automatisierungsgrad	Mar	nuell	Teilau	tomatisiert/hybrid	de Automatisierung	Automatisierung		Vollautoma	tisch	
3.10	Fertigungsmethoden	Schneiden	Trad. Primäre l	Formgebung	Additive Fertigung	Additive Fertigur	ng Fügen	Beschio	htung	Änderung laterialeigenschaften	
3.11	Fertigungstechnologien		Physisch			Chemisch			Biologisch		

Das Labor ist in Zellen aufgeteilt, in denen verschiedene Konfigurationen möglich sind. Auf 2000 Quadratmetern können verschiedene Prozessabläufe je nach Zielsetzung der Kurse angeordnet werden.

Spezifische Ausrüstung, die im LAB verwendet wird, Adressierung von Industrie 4.0:

Die Idee der Werkstatt ist es, mindestens auf dem gleichen Niveau voll digitalisiert zu sein, auf dem die Industrie ihre Produktionsanlagen digitalisiert. Dies bietet einen voll digitalisierten TVET-Trainingsraum, der nach den gleichen Industriestandards gestaltet ist.

Die Werkstatt weist unter anderem folgende Merkmale auf:

Kommunikation zwischen allen Maschinen und Anlagen. Dazu verfügt die Werkstatt über ein WI-FI-System, das sich mit den verschiedenen an den Maschinen angeschlossenen SPSen verbindet. Das WI-FI wird über ein Beacon-System gesendet und die PLCs haben die Empfänger.

Cybersecurity. Um Eindringlinge von außen zu vermeiden, ist das WI-FI-System des Labors völlig unabhängig vom Rest der Schule.

Zentralisiertes Reservierungssystem und Kontrolle der Nutzung. Durch Bildschirme, die an strategischen Punkten installiert sind, wird die Möglichkeit geschaffen, die Maschinen zu reservieren. Der Lehrer bestimmt die Maschinen, die der Schüler reservieren kann. Ohne Reservierung ist es nicht möglich, eine Maschine in Betrieb zu nehmen, und um zu reservieren, muss sichergestellt werden, dass man die PSA hat. Auf diese Weise wird kontrolliert, wie stark das Labor ausgelastet ist, eine angemessene Verteilung der Maschinen vorgenommen und die Sicherheit erhöht. Die Reservierung erfolgt über RFID HF.

Intelligentes Lager zur Steuerung des Werkzeugeinsatzes. Die allgemeinen Werkzeuge sind in einem intelligenten Lager untergebracht, in dem mittels RFID UHF kontrolliert wird, wer Zutritt hat und welche Werkzeuge er entnimmt, da jedes Werkzeug über eine entsprechende RFID UHF verfügt. Ebenfalls im Inneren befindet sich ein Computer, der durch verschiedene Filter anzeigt, an welchem Ort sich jedes Werkzeug befindet oder ob es sich außerhalb des Lagers befindet und wer es hat.

RFID-Karte. Je nach Funktion in der Werkstatt wird ein UHF- oder HF-RFID-System benötigt. In unserem Fall wurden beide Technologien in eine einzige Benutzerkarte eingebaut.

Big-Data-Analysen. Durch die Identifikation werden die Schüler und der Nutzungsgrad ihrer Maschine verfolgt, da die Reservierungszeit und die Nutzungszeit bekannt sein können. Sie können die Energieeffizienz verfolgen, intelligente Wartungssysteme erstellen und diese Daten überwachen und nutzen.

Open-Source-Enterprise-Resource-Planning-System (ERP) zur Verwaltung des gesamten Systems.

Bildschirme an den Maschinen, um technische Informationen einzusehen, die der Benutzer in der Cloud zur Nutzung an den Maschinen hinterlegt hat. Auf diese Weise können Sie Pläne, Prozesse, ... einsehen, ohne Papiere mit sich führen zu müssen. Senkung des Papierverbrauchs und der Bewegungszeiten.

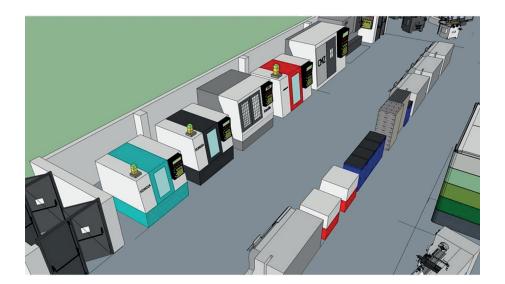
EINSTELLUNGEN

4.1	Lernumgebung	Rein physikalisch (Planung + Ausführung)	digitale F	unterstützt durch abrik (siehe "IT- egration")	Physisch, vir	tuell erweitert	Rein virtuell (Planung + Ausführung)
4.2	Umgebungsskala	Ve	erkleinert			Lebens	sgroß
4.3	Arbeitssystemebene	Arbeitsort	Arbe	eitssystem	W	erk	Netzwerk
4.4	Enablers für Verädnerbarkeit	Mobilität	Modularität	Kompatibi	lität	Skalierbarkeit	Universalität
4.5	Veränderbarkeitsdimens ionen	Layout & Logistik	Produktmerk male	Produktde	sign	Technologie	Produktmengen
4.6	IT-Integration	IT vor SOP (CAD, CAM, Si	imulation)	IT nach SOP (PPS	, ERP, MES)	IT nach Pr	oduktion (CRM, PLM)

Zu welchem Zweck werden verschiedene IT-Integrationen eingesetzt:

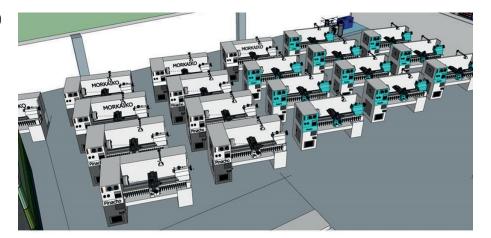
Die im Labor integrierten Elemente stehen im Zusammenhang mit der Digitalisierung der Prozesse. Maschinenkommunikation und Datenerfassung. Die spezifische Ausrüstung, die im LAB verwendet wird und sich mit Industrie 4.0 befasst, wurde im vorherigen Abschnitt 3 erläutert.

Der Zweck dieser Ausrüstung und der zugehörigen IT-Ressourcen ist es, die Schüler aus allen Programmen an die Arbeit in digitalisierten Umgebungen zu gewöhnen. Die Daten, die während des Lernprozesses entstehen, werden analysiert und von den Studierenden als Lernaktivität genutzt, um den Gesamtprozess zu verbessern. Die Studenten werden mit der Verwendung von Datenanalysewerkzeugen vertraut gemacht und können Entscheidungen auf der Grundlage realer Ergebnisse treffen.

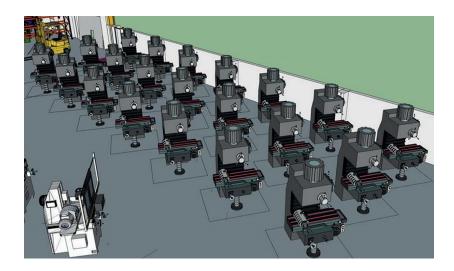

Die Studenten aus den mechanischen Studiengängen verstehen die Automatisierungsarchitektur, die Funktion der verschiedenen Geräte, die Kommunikationsprotokolle und andere Merkmale bezüglich Industrie 4.0

Allgemeine Einstellung der Ausrüstung

Die Werkstatt nimmt einen Raum von 2000m2 ein, in dem 165 Studenten gleichzeitig arbeiten können. Der Raum ist in 8 verschiedene Zellen unterteilt, die sich aus 86 verschiedenen Maschinen zusammensetzen. Die Zellen, die wir finden können, sind: CNC, Drehbänke, Erdbeeren, END, Schleifen, Metallumformung, mechanische Montage und elektrische Montage.


Der CNC-Bereich wird durch 12 Maschinen vervollständigt, welche sind:

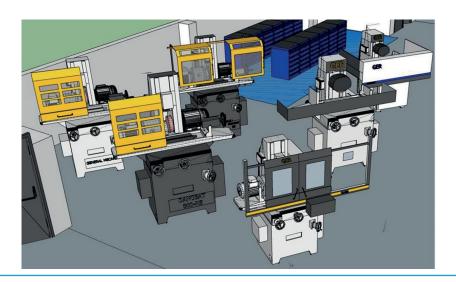
- 1 Kondia B-500
- 1 Kondia B-640
- 1 Kondia HM1060
- 1 Kondia A6
- 1 CMZ TC 20YS
- 1 Lealde
- 4 Smart-200
- 2 Emco Mill 105


Der Bereich Drehmaschinen ist mit 20 Maschinen komplettiert, die sind:

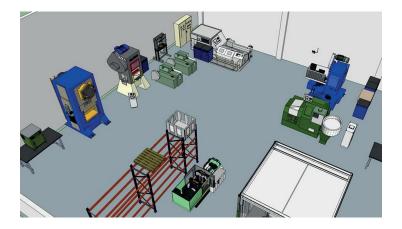
- 10 Pinacho S 90/200
- 5 Pinacho SC 200
- 5 Morkaiko 400 M

Der Mühlenbereich wird durch 21 Maschinen vervollständigt, welche sind:

- 2 Lagun FTV 1
- 2 Lagun FTV 2-S
- 6 Lagun FTV 4-SP
- 2 Lagun FV-125
- 1 Lagun MEC
- 7 Kondia FV-1
- 1 CME FV-15


Der END-Bereich wird durch 4 Maschinen vervollständigt, die sind:

- 1 Ona Datic S30
- 1 Onadatic F30
- 1 Aricut
- 1 Prima


Der Bereich Metallumformung ist mit 7 Maschinen komplettiert, die sind:

- 1 GER G450
- 1 GER S40/20
- 1 GER MH
- 1 Danobat 500
- 1 Danobat 800R
- 1 GM OHX

Der Bereich Metallumformung ist mit 7 Maschinen komplettiert, die sind:

- 1 Dellavia 300Tn
- 1 Delteco 65Tn
- 2 National Kaiser
- 1 Sacma SP260
- 1 Schuller
- 1 Diregi DK7

Der Bereich Mechanische / Elektrische Montage ist mit 10 Maschinen komplettiert, welche sind:

- •
- 2 Pinacho Fanuc
- 1 Pinacho Fagor
- 2 Supernona mills
 - 3 Alecoop Magnum didactic lathe

5.1	Material		Materie	II (physisches	produkt		I	mmateriell (Se	rvice)	
5.2	Produktform		Stück	gut		Schütt	gut	Strömu	ngsrodukte	
5.3	Produktherkunft	Eiç	gene Entwicklun	9	Entwic	cklung durch Teilne	ehmer	Externe	Entwicklung	
5.4	Marktfähigkeit des Produktes	Auf o	dem Markt verfüg	bar	Am Markt ve	erfügbar, aber nicht vereinfacht	t didaktisch	Nicht auf dme Markt verfügbar		
5.5	Produktfunktionalität	Funkt	tionsfähiges Prod	dukt		h angepasstes Pro schränkter Funktio			on / Anwendung Deonstration	
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon T entwicl		Annahme	von Aufträgen	
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nach	ı teilnehmer	Bestimmt	durch Aufträge	
5.8	Anzahl der Komponenten	11 Komponente 6-20 Komponenten 51-100 Komponenten							> 100 Komponenten	
5.9	Weitere Verwendungen des Produktes		wendung/- ertung	Ausst	ellung	Werbegeschenk	Ver	kauf	Entsorgung	

Weitere Beschreibung der im LAB hergestellten Produkte

Dieses Labor kann nicht als Lernfabrik betrachtet werden. Sofern nicht einige Produktionsprozesse implementiert werden und einfache Produkte durch die Nutzung der Ausrüstung verwendet werden, dreht sich der Gesamtansatz des Labors nicht um die Produktion und Montage eines Produkts oder einer Produktfamilie.

Die für die Lernaktivitäten verwendete Methodik ist "Challenge based collaborative learning". Diese Herausforderungen sind in den meisten Fällen das Design, die Herstellung und die Montage von Produkten. Bei den Fällen kann es sich um "Dienstleistungen", die Automatisierung von Linien, Projekte zur Wartung von Anlagen, Problemlösungsherausforderungen usw. handeln. In gewisser Weise können diese Herausforderungen auch als Produkte verwaltet werden. Allerdings können die Herausforderungen von Team zu Team, von Gruppe zu Gruppe variieren. Die Reihenfolge und die Ziele der Herausforderungen sind ebenfalls unterschiedlich, immer mit dem Ziel, einen Lernprozess zu erfüllen und eine Reihe von Fähigkeiten zu erwerben. Es werden also unterschiedliche Anordnungen des Labors verwendet.

Die Informationen der Tabelle müssen also im einzigartigen Kontext dieses Labs gefiltert und interpretiert werden.

6.1	Kompetenzklassen	Fach- und Method	denkompetenzen	Soziale & kor Kompe	mmunikative Itenzen	Persönlichkei	itskompetenzen	_	gs- und umsetzungsorientierte Kompetennzen	
6.2	Dimensionen Lernziele	Kogr	nitiv		Affektiv			Psycho-m	notorisch	
6.3	Lernszenariostrategien	Anweisung	,	/orführung		Geschloss	enes Szenario	C	Offenes Szenar	io
6.4	Art der lernumgebung	Greenfiel	ld (Entwicklung der	Fabrikumgebu	ung)	Brownfie	eld (Verbesserur	ng der bestehe	nden Fabrikum	ngebung)
6.5	Kommunikationskanal	Lerr	nen vor Ort (in Fabr	ikumgebung)			Fernverbindu	ıng (zur Werks	umgebung)	
6.6	Grad an Autonomie	Beauf	tragt	Selbs	tgesteuert/-reç	guliert		Selbstbestimn	nt/-organisiert	
6.7	Rolle des Trainers	Präsentator	Modera	itor		Coach			Ausbilder	
6.8	Art der Ausbildung	Lernprogramm	Praktischer L	aborkurs	Sem	ninar	Works	hop	Projek	tarbeit
6.9	Standardisierung von Schulungen		Standardisierte Scl	nulungen			Indivi	duelle Schulur	ngen	
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus (en bloc)		chsel mit hen teilen Bedarfs		rientiert	Dar	nach
6.11	Auswertungsstufen	Feedback der teilnehmer	Lernen der Te	ilnehmer	Transfer in	reale Fabrik Wirtschaftlcik		J	Return on tr	ainings / ROI
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstest	mündlich)	Schriftlicher Bericht	Mündlcihe	Präsentation	Praktische Prüfung		Keine

Spezifische Kompetenzen, die im Labor angesprochen werden, und das verwendete Curriculum:

Von den Ausbildungsprogrammen, die im Zentrum angeboten werden, wird dieses Labor von 4 Programmen genutzt: Techniker in der Zerspanungstechnik (EQF-Level 4), Höherer Techniker in der Produktionsplanung in der mechanischen Fertigung (EQF 5), Höherer Techniker in der Fertigungskonstruktion Mechanik (EQF 5) und Höherer Techniker in der Industriemechanik (EQF-Level 5).

Der Studiengang Zerspanungstechniker macht in 3 seiner Module Gebrauch vom Labor. Im 1. Jahr Fertigung durch Zerspanung (363h) und im 2. Jahr CNC (252h) und Fertigung durch Abrasion, Erodieren, Schneiden und Umformen, additive Fertigung und durch spezielle Verfahren (210h).

Das Programm des Höheren Technikers in der Programmierung der Produktion in der mechanischen Fertigung nutzt das Labor in 3 seiner Module. Im 1. Jahr Mechanische Fertigungstechniken (198h, 11 Credits) und im 2. Jahr CNC (240h, 18 Credits) und CAM (40h, 5 Credits).

Der Studiengang Höherer Techniker für Konstruktion in der mechanischen Fertigung nutzt das Labor für 1 seiner Module. Im 1. Jahr Mechanische Fertigungstechniken (198h, 11 Credits).

Das Programm des Höheren Technikers in Industrieller Mechatronik (höheres Niveau, Stufe 5) nutzt das Labor in 2 seiner Module. Im 1. Jahr Fertigungsprozesse (165h, 10 Credits) und im 2. Jahr Konfiguration von mechatronischen Systemen (160h, 9 Credits).

Alle diese Module, zusätzlich zum Erreichen der allgemeinen Fähigkeiten, die innerhalb der mechanischen Fertigung erforderlich sind, sind darauf vorbereitet, an verschiedenen Fähigkeiten zu arbeiten, die mit I 4.0 zusammenhängen. Diese sind unter anderem:

- Programmsimulation: per Computer, Maschine, CAM integriert in der Maschine,
 3D-Simulation, virtuell, etc.
- Integration von Datenerfassungssystemen. Künstliche Sichtkameras.
- Integration von Radiofrequenz-Identifikationssystemen.
- Korrektur in Echtzeit der Abweichungen der bearbeiteten Teile (Maß-, Geometrie- und Oberflächentoleranzen).
- Verwendung von Computer-Tools und Software für den Zugriff und die Verwaltung der notwendigen und generierten Dokumentation (PC, Tablet, Smartphone, Maschinenschnittstelle, integrierte CAD / CAM / ERP-Systeme, PLM, etc.).
- Registrierung des Programms und der erzeugten Dokumentation in: Ordnerstruktur, integrierte CAD / CAM / ERP-Systeme, PLM, etc.
- Bearbeitungsstrategien: hohe Leistung, hoher Vorschub, adaptive Bearbeitung, ...).
- Programmierung von Robotern (industrielle und kollaborative) für Manipulation und Bearbeitung.
- Überwachung von Computersicherheitsvorschriften und -verfahren (Cybersecurity).
- Analyse von Prozessdaten in Echtzeit (Big Data, Smart Data, ...).

Lernmethode

Das zentrale Element, an dem sich das gesamte Lernmodell orientiert, ist das KOLLABORATIVE LERNEN AUF DER BASIS VON HERAUSFORDERUNGEN.

Die Präsentation einer problematischen Situation, ihre Umwandlung in eine Herausforderung sowie der gesamte Prozess bis zum Erreichen eines Ergebnisses ist sowohl auf der Grundlage der technischen und spezifischen Kompetenzen jedes Programms strukturiert, als auch auf der Grundlage der übergreifenden Kompetenzen, die derzeit strategisch sind, wie z. B.: autonomes Lernen, Teamarbeit, Orientierung an außergewöhnlichen Ergebnissen, digitale Kompetenzen, etc...

Problematische Situationen werden in allen Fällen an eine Klasse herangetragen, die in Teams konfiguriert ist, wobei der Arbeitsprozess es den Schülern ermöglichen muss, die Situation als Herausforderung zu erleben, und von dort aus müssen sie die Möglichkeit haben, das notwendige Wissen zu generieren, das die besten Lösungen bietet.

Die Annäherung des Modells durch Herausforderungen erfordert eine Neuinterpretation der Mechanik des Lernens. Die Interpretation, die am besten zum Modell passt, ist, das Lernen als einen Evolutionsprozess zu verstehen, für den die Schüler verantwortlich sind. Herausforderungsbasiertes Lernen ermöglicht ein Szenario, in dem die Schüler individuell und auf Teamebene in Aktion treten und ein Ergebnis produzieren. Dieses Ergebnis wird interpretiert, analysiert und diskutiert, um notwendige Änderungen vorzunehmen, um bei der nächsten Herausforderung höhere Ziele zu erreichen.

Die Hauptidee dieser Methodik besteht darin, Teams zu bilden und für sie einen Vertrag zu erstellen, in dem die von den Mitgliedern jedes Teams erworbenen Verpflichtungen enthalten sind. Diese Verträge werden sich entwickeln und verändern, wenn die Teams Erfahrungen sammeln. Bei der Arbeit in der Werkstatt müssen sich diese Teams selbst verwalten, indem sie die Aufgaben aufteilen, um die Herausforderung zu bewältigen. Der Einsatz von Maschinen erfolgt in der Regel einzeln oder in Paaren.

Diese Methodik ermöglicht es uns, intramedullär zu arbeiten, so dass die Studenten an transversalen Kompetenzen durch Herausforderungen arbeiten können, die nahe an einer Geschäftsrealität sind. Der nächste Schritt wäre die Schaffung einer Lernfabrik, die den Betrieb der Werkstatt einer realen Werkstatt simuliert.

7.1	Anzahl an Teilnehmern pro Schulung	1-5 Teilnehmer	5-10 Teilnehmer	10-15 Teilnehmer	15-30 Teilnehmer	30> Teilne	ehmer
7.2	Anzahl an standardisierten Schulungen	1 Training	2-4 Trainings	5-10 Trair	nings	> 10 Trair	nings
7.3	Durchschnittliche Dauer einer Schulung	≤1 Tag	> 1 Tage bis ≤ 2 Tage	> 2 Tage bis ≤ 5 Tage	Tage bis ≤ 5 Tage		> 20 Tage
7.4	Teilnehmer pro Jahr	< 50 Teilnehmer	50-200 Teilnehmer	201-500 Teilnehmer	501-1000 Teilnehmer	> 1000 Teili	nehmer
7.5	Kapazitätsauslastung	< 10%	> 10 bis ≤ 20%	> 20%bis ≤ 50%	> 50% bis ≤ 75%	> 759	%
7.6	LABgröße	≤ 100 qm	> 100 qm bis ≤ 300 qm	> 300qm bis ≤ 500qm	>500 qm bis ≤ 1000 qm	> 1000	qm
7.7	FTE im LAB	<1	2-4	5-9	10-15	> 15	

In diesem Labor sind 20 Studierende gruppiert in 5 Arbeitsinseln.

WEITERE INFORMATIONEN UND ASPEKTE ZUR VERBESSERUNG

8.1	Weitere Informationen	Bilder	Video
8.2	Aspekt zur Verbesserung	Technisch	Methodologisch

Zu verbessernde Aspekte:

Eine der Funktionen, um die wir uns gekümmert haben, ist die Skalierbarkeit des Systems. Wir glauben, dass der Markt und die Industrie viele neue Funktionen verlangen werden, die in einem Lernbereich wie diesem zu implementieren sind. Wir haben eine solide Basis geschaffen, um weiter zu wachsen und neue unvorhergesehene Technologien zu implementieren. Sie verwenden hauptsächlich industrielle Hardware, die es möglich macht, weiter zu wachsen.

Die Implementierung von Technologien und Funktionen im Zusammenhang mit Industrie 4.0 ist ein fortlaufender Prozess. Kurz- und mittelfristig sind viele neue Implementierungen und Investitionen vorgesehen

Schaffung von modularen Zellen.

Nachrüstung von CNC-Maschinen als Lernzellen, in denen I4.0-Geräte und Kommunikationsprotokolle implementiert und ausprobiert werden können.

- Intelligentes Wartungssystem
 Metrologie in Linienprozessen
- Virtualisierung von LABs. Digitaler Zwilling des Labors
- Integration von Cobots in CNC-Maschinenbeschickung und Montagelinien
- Energie-Effizienz-Module
- Systeme f
 ür die R
 ückverfolgbarkeit von Produkten. Kontrolle der Best
 ände
- Verwaltung von Systemen mit ERP, Verknüpfung verschiedener LABs und Abteilungen

Stärken und Schwächen des LAB. Gelernte Lektionen

In Bezug auf die aktuelle Implementierungsphase sind die zu verbessernden Bereiche, die Flexibilität der Systeme zu erhöhen. Wir sind dabei, ein Organisationsmodell zu entwerfen, um verschiedene Schulungen gleichzeitig im selben Labor durchführen zu können. Das schafft komplexe organisatorische Planungs- und Terminierungsanforderungen. Um dieses Problem zu überwinden, müssen wir modulare und flexible Zellen implementieren, in denen sich Konfigurationen und Zeitpläne leicht ändern lassen.

Während der Planung und Implementierung dieses Labors wurde uns bewusst, wie wichtig es ist, ein Bewusstsein bei den Lehrern zu schaffen. Die Schaffung einer "Kultur von I40" ist der erste Schritt in diesem Prozess. Es ist von entscheidender Bedeutung, Ausbilder und Lehrer für das I40-Mindset zu gewinnen. Die Kultur der Digitalisierung und der Nutzung von Daten, die über unsere eigenen Prozesse generiert werden, muss als ein primäres Lern-/Lehrbedürfnis verstanden werden.

Um die Vorteile des Systems klar aufzuzeigen und den Anwendern die Vorteile der Automatisierung zu verinnerlichen, mussten wir die Kommunikationskanäle und die Politik verstärken.

Es wurden spezifische "Train the Trainers"-Aktionen durchgeführt. Wir sorgten dafür, dass sich alle Mitarbeiter mit dem neuen System wohlfühlen.

Was die pädagogischen Aspekte betrifft, so bauen wir das Labor eingebettet in unsere Reise in Richtung des Lernfabrik-Ansatzes. Neben der Technologie werden auch pädagogische Veränderungen umgesetzt. Beide Aspekte gehören zusammen. In der Tat sind alle vorgenommenen Änderungen sinnvoll, solange sie den Lernprozess der Schüler verbessern. In diesem Sinne müssen wir an beiden Aspekten gleichzeitig arbeiten.

Wir verstehen, dass wir uns vor der Durchführung von Maßnahmen zur digitalen Transformation, in diesem Fall in der Fertigungswerkstatt, darüber im Klaren sein müssen, was wir mit dieser Transformation im Hinblick auf die Verbesserung des Lernprozesses erreichen wollen.

Robotic LAB

Einleitung:

Dieses Modell wird von Partnern des Konsortiums mit Unterstützung von Unternehmen und assoziierten Partnern und dem Modell zur Beschreibung von Lernfabriken (Abele, Metternich und Tisch. 2019) erarbeitet, um bestehende und zukünftige lernende cyber-physische Räume, AM LABs 4.0, und deren Eigenschaften zu beschreiben.

Das Modell wurde entwickelt, um eine gemeinsame Struktur für Beschreibungen von AM LABs 4.0 zu schaffen. Das Beschreibungsmodell umfasst Aspekte der Labs wie physische Merkmale, Ausstattung, IKT-Anwendungen, I4.0-Technologien, Methodologien, Lernstrategien usw.

Partner, Organisationen und Institutionen können von den Beschreibungen der AM LABs 4.0 profitieren, indem sie Informationen über verschiedene lernende cyber-physische Räume auswerten.

Alle Konsortialpartner haben ihre AM LABs 4.0 mit Hilfe des Modells beschrieben, um eine standardisierte Struktur für die Beschreibung von cyber-physischen Räumen zu haben, die für die Berufsbildung und Stakeholder in ganz Europa von Vorteil ist. Die Struktur macht das Modell für Nutzer außerhalb des EXAM-Konsortiums lesbar und ist für andere Nutzer einfach zu verwenden, wenn sie ihre/neue AM LABs 4.0 beschreiben.

In den folgenden Abschnitten wird eine detaillierte Beschreibung einer Reihe von Referenzlaboren gezeigt. Alle Labs werden mit der folgenden Struktur beschrieben:

- Allgemeine Informationen
- Funktionsmodell
- Zweck und Zielsetzung
- Ablauf
- Einstellung
- Produkt
- Didaktik
- Metriken
- Weitere Informationen & Aspekte zur Verbesserung

_						
	l a	hი	rn	a	m	Θ.

Automatisierungs- und Robotik- LAB

■ Allgemeiner Zweck/Zielsetzung (kurze Zusammenfassung):

Entwickeln und leiten Sie Projekte für die Montage und Wartung von automatischen Anlagen

Jahr:

2000

Laborgröße (qm):

130

In den folgenden Abschnitten wird eine detaillierte Beschreibung einiger Referenzlaboratorien gezeigt. Alle Labore werden mit der folgenden Struktur beschrieben:

■ Allgemeine Informationen - Übersichtstabelle

	Name of the LAB			Robot	tic lab					MAIN PURPOSE		
	VET/HVET centre			Migeul Al	tuna LHII					Education		х
GENERAL INFORMATION	Floor space of the lab (sqm)			13	30					Training		х
	Main topic/learning content			Automatic i	installations				Re	search/Applied innovation		
	I4.0 related technologies				CPS, robotic, RF	ID, Cybersecurity	components, o	data adquisit	ion		'	
	Learning content			ce of autom	atic installations	s.						
PURPOSE	Secondary purpose			mart mainte	nance							
	LAB type		Production automation, Safety, 14.0 related topics, smart maintenar Specific Mixed									
		Na	me of the programmes	s carried out on the Lab		EQF Level	Lab hours	Nº subje	cts on the lab	Hour/Week x n° of weeks	Nº stud	lents (3)
			Automation and Ir	ndustrial Robotics		5	120	5		6x20	2	20
	Learning programmes/study		_	=		_	100		_	5x20	2	20
LEARNING CONTENTS	programmes/levels		-	-		-	140		-	7x20	2	20
			_	-		-	140		_	7x20	2	20
			-	-		-	50		-	25x2	2	20
			_			_	_		_	_		
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6		Cell 7	Cell 8	Ce	ell 9
	Category of cell	-	-	-	-	-	-		_	-		_
	Nº machines	32	-	-	-	-	-		-	=		-
SETTINGS	I4.0 Enabler technologies used and	Robotics	Additive Manufacturing	CPS	Mobile/Tablet	AR/VR	Big da	a analytics	Ai	loT.	/lloT	
	implementation level	Sensors/Actuators	RFID	M2M	Cybersecurity	Digital twin						

Zweiter Abschnitt – Detaillierte Beschreibung

BETRIEBSMODELL

		Akad	emische Instituti	on			Nicht-akademische Institution					Gewinnorientierter Betreiber		
1.1	Betreiber	Universitäty	Hochschule	BA	Berufs	sschule/Gymn	asium	Kammer	Gewerkschaft	Arbeitgeberv erband	Industrielles Netzwerk	Beratung	Produzierendes Unternehmen	
1.2	Trainer	Professor	Forscher		Studenti	sche Hilfkraft		Technsic	her Experte/Int.	Spezialist	Berater	Päd	dagoge	
1.3	Entwicklungen		Eigene Entw	icklung			Extern	geförderte Ent	wicklung		E	xterne Entwick	dung	
1.4	Anfangsfinanzierung		Interne M	ittel		Öfentliche Mittel					Geschäftsmit	ttel		
1.5	Laufende Finanzierung		Interne M	littel			Öfentliche Mittel					Geschäftsmit	ttel	
1.6	Förderkontinuität	Kurzfristige Fi	nanzierung z.B.:	einzelne Ve	ranstaltungen)	Mittelfrist	ge Förderunge	n (z.B. Projekt	e und Programm	e <3Jahre)		ge Förderung ogramme > 3		
1.7	Geschäftsmodell für		Off	ene Modell	e							ali internali man		
1.7	Schulungen	Club-M	lodelle		Geschlossene Modelle (Trainingsprogramme nur für Einzelunternehmen Kursgebühren					1				

Hinweis: In 1.7 Geschäftsmodelle für die Ausbildung gibt es verschiedene Modalitäten: Für Studenten im Erstausbildungsmodell sind die Programme staatlich finanziert. Für die maßgeschneiderte Ausbildung für Unternehmen ist es eine Kursgebühr.

Dieses Labor befindet sich innerhalb einer Berufsausbildung, die institutionalisierte, absichtliche und geplante Lernprozesse vermittelt und deren Ergebnisse akkreditiert sind ...

Beschreibung der Finanzierungsmethoden

Miguel Altuna ist ein öffentliches Berufsbildungszentrum, das dem Bildungsministerium des Baskenlandes untersteht, so dass die Aktivitäten des Zentrums hauptsächlich von der Berufsbildungsabteilung des Bildungsministeriums finanziert werden.

Miguel Altuna plant und überwacht sein eigenes Budget und entscheidet unabhängig über die Verwendung der Ressourcen.

- Miguel Altuna wird hauptsächlich von der Regierung finanziert. Es ist jedoch erlaubt, Einkommen zu erwirtschaften und einzubehalten (z.B. durch den Verkauf von Trainingsdienstleistungen), um Investitionen, Forschung oder andere Aktivitäten zu finanzieren.
- Da Miguel Altuna eine öffentliche Einrichtung ist, hat sie bis zu einem gewissen Grad die Befugnis, selbstständig Verträge mit anderen Organisationen wie Unternehmen, Schulungsanbietern und Spendern abzuschließen, um z. B. Dienstleistungen oder Ausrüstung zu kaufen oder zu verkaufen. Es gibt Einschränkungen bei der maximalen Höhe der Verträge und auch bei der Art der Verträge.

Miguel Altuna hat jedoch nicht die Befugnis, Kredite aufzunehmen, um z. B. Investitionen zu finanzieren.

Zweck & Zielsetzung

2.1	Hauptzweck		Aus	bildung		Berufsbildung								Onderzoek					
2.2	Sekundärer Zweck		Testumgebung/Pilotumgebung				Industrieproduktion Innovation					ationstransfer	pnstransfer			Anzeige für Produktion			
			Studierende			Arbeitnehmer													
2.3	Ziepgruppen für Bildung und Training	Schüler	Bachelor	Master		Auszubilden	F	Ausge	bildete	Ungelemte	Managers			Unternel	nmer	Freiberufler	Arbeitslos		Öffentlich zugänglich
			Bachelor	Master	Doktoranden	de	Fachkraft	Fact	Fachkraft		Unteres Management	Mittleres Management	Top- Managemen	nt					
2.4	Gruppenkonstellation		Hor	nogeen		heterogen (Wissensstand, Hierarchie, S						, Hierarchie, Stud	lierende + Mita	arbeiter, etc.)					
2.5	Zielindustrien	Maschinen- und Anlagenbau			A	Automobil			Logis	tik	1	Frans port		F	FMCG	Luft-	und Raumfal	ıhrt	
2.0	Zieiiidustrieii		Chemische Industrie		Elektronik		Konstru		ktion	Versichen	ungen/Bankwe	sen	Textil						
2.6	Fachbezogener leminhalt	eme	onsmanag ent & isation.	Ressourc	ceneffizienz	Lean	Lean-Management			tomatisierung CPPS		Abeitssystem Itung	Abeitssystemgesta Itung HMI				ogistik, Design & Management		
2.7	Rolle des LAB für die Forschung		·			Forsch	Forschungsobjekt						factor die o	nderzoek	k mogelijk maa	kt			
2.8	Forschungstehmen	Produk	tionsmanager	ment & Orga	anisation	Ressourceneffizienz			L	ean Management	Automatisie	erung CF	PPS V	eränderba	parkeit	НМІ	Didaktik		

Das Robotik-Labor wurde im Jahr 2000 eröffnet. Es wurde kontinuierlich aktualisiert. Im Jahr 2019, als Miguel Altuna seinen Standort verlegte, wurde das Labor umgestaltet und neue Geräte eingeführt.

Das allgemeine Ziel dieses Labors ist es, Projekte für die Montage und Wartung von automatischen Mess-, Regel- und Prozesssteuerungseinrichtungen in den neuen Industriesystemen zu entwickeln und zu leiten sowie die Montage, Wartung und Inbetriebnahme von Systemen zu beaufsichtigen oder durchzuführen, wobei die Kriterien der Qualität, der Sicherheit und des Respekts für die Umwelt und des Designs für alle eingehalten werden. All dies unter Einbeziehung von Digitalisierungskompetenzen und Industrie 4.0-Methoden, die sich an den Anforderungen der Industrie orientieren.

Diese Zielsetzung beinhaltet Aufgaben wie:

- Management- und Steuerungsprogramme für Kommunikationsnetzwerke entwickeln.
- Erstellen von Roadmaps, unter Verwendung von Büroautomatisierungswerkzeugen, die für die Geräte des automatischen Systems spezifisch sind, um das Montageprotokoll, Tests und Richtlinien für die Inbetriebnahme zu definieren.
- Definition der Logistik unter Verwendung von Computer-Tools für die Lagerverwaltung, um die Lieferung und Lagerung von Materialien und Geräten zu verwalten.
- Die Montage von automatischen Steuerungsanlagen und Kommunikationsinfrastrukturen durchführen.
- Diagnostizieren Sie Ausfälle und Störungen mit Hilfe geeigneter Diagnose- und Testwerkzeuge, um die zugehörigen Anlagen und Geräte zu überwachen und / oder zu warten.
- Überprüfen des Betriebs der Steuerungsprogramme unter Verwendung industrieller programmierbarer Geräte, um die Einhaltung der festgelegten Funktionsbedingungen zu überprüfen.
- Die Ressourcen und Lernmöglichkeiten im Zusammenhang mit der wissenschaftlichen, technologischen und organisatorischen Entwicklung des Sektors und der Informations- und Kommunikationstechnologien analysieren und nutzen, um den Geist der Aktualisierung aufrechtzuerhalten und sich an neue Arbeits- und persönliche Situationen anzupassen.
- Kommunikationsstrategien und -techniken anwenden, angepasst an den zu vermittelnden Inhalt, den Zweck und die Eigenschaften der Empfänger, um die Effektivität von Kommunikationsprozessen zu gewährleisten.
- Situationen zur Vorbeugung von Berufsrisiken und zum Schutz der Umwelt bewerten, Präventionsmaßnahmen vorschlagen und anwenden.
- Identifizieren und vorschlagen, welche professionellen Maßnahmen notwendig sind, um auf universelle Zugänglichkeit und "Design für alle" zu reagieren.

Studiengänge und das EQF-Niveau jedes Studiengangs bezogen auf das LAB:

Die Hauptnutzung ist für Studenten im 2. Jahr des Studiengangs "Automatisierungs- und Robotertechnik" EQF5

Das Robotiklabor wird neben dem genannten Studiengang auch genutzt für:

- Spezialisierungsprogramme
- Ausbildung f
 ür Beschäftigung
- Maßgeschneiderte Ausbildung für KMUs
- Verbesserungs- und Wiederverwertungsprogramme
- Tkgune Angewandte Innovation und technische Dienstleistungen für KMUs
- Showroom für Unternehmen

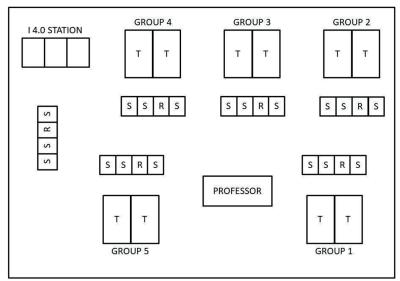
PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Service	Ser	vice	Produktlebenszyklus
3.2	LAB Lebenszyklus	Investitionsplanung	Fabrikkonzept	Prozessplanung	Hochlauf	Fertigung	Montage	Service	War	tung	LAB Lebenszyklus
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequenzieru ng	Produktions termin		Fertigung	Montage	Service	Kommissi Verpa	onierung & ckung	Versand
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle Prüfung Fertigung Montage Service Wartu				tung	Modernisierung		
3.5	Indirekte Funktionen	SCM	Vertrieb	Eink	auf	HR	Finazen/C	Controlling		QM	
3.6	Materialfluss		Kontinuierliche Pro	oduktion		diskrete fertigung					
3.7	Prozesstyp	Massenp	roduktion	Serienpro	oduktion		Kleinserienfe	rtigung		Kleir	nserienfertigung
3.8	Fertigungsorganisation	Ortsgebunde	ene Fertigung	Werkbank	fertigung		Werkstattfer	tigung		Werkstattfertigung	
3.9	Automatisierungsgrad	Mar	nuell	Teila	utomatisiert/hybr	ride Automatisieru	ide Automatisierung		Voll		า
3.10	Fertigungsmethoden	Schneiden	Trad. Primäre Fo	ormgebung	Additive Fertigung	Additive Fertigung Füge		Beschichtung		Änderung Materialeigenschafter	
3.11	Fertigungstechnologien		Physisch		Chemisch			Biologisch			

Spezifische Ausrüstung, die im LAB verwendet wird:

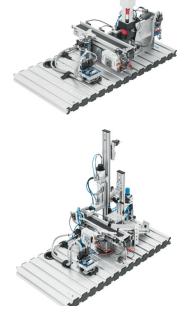
Die Idee des Labors ist es, mindestens auf dem gleichen Niveau voll digitalisiert zu sein, auf dem die Industrie ihre Produktionsanlagen digitalisiert. Dies bietet einen vollständig digitalisierten TVET-Trainingsraum, der nach den gleichen Industriestandards gestaltet ist.

Mit Blick auf Industrie 4.0 arbeitet das Robotiklabor nun hauptsächlich an M2M, CPS, Sensoren/Aktoren, RFID und Robotik, wobei auch Nuancen von Cybersicherheit und Big Data hinzukommen:


- **M2M:** Nachdem wir automatisierte Systeme mit den Stationen entworfen haben, arbeiten wir an der Kommunikation zwischen ihnen durch verschiedene industrielle Kommunikationssysteme wie ASI-Bus, Profibus-Bus und Ethernet-Profinet-Bus.
- CPS: Die im Schulungsraum vorhandenen physikalischen Elemente können mit der entsprechenden Simulationssoftware für die Ausbildung genutzt werden. Moderne PC-Technologie erlaubt es uns, realistische 3D-Simulationen auch für die komplexesten Automatisierungssysteme zu erstellen. Die Teilnehmer erleben die kinetische Dynamik mechatronischer Systeme in der virtuellen Realität ohne Risiko für Mensch und Maschine. Dies ermöglicht den Anwendern einen sorglosen Einstieg in die Automatisierungstechnik und sorgt für einen großen Motivationsschub. Hierfür werden verschiedene Software wie CIROS Mechatronics, CIROS Robotics, CIROS Studio, Robotstudio und URSIM eingesetzt.
- Sensorik, Aktorik und RFID: Im Labor stehen verschiedene Sensoren, RFID-Geräte und Lesegeräte zur Verfügung, um diese zu programmieren und später in ein automatisiertes System einzubinden.
- Robotik: Die verschiedenen Roboter und die dazugehörige Software werden genutzt, um deren Programmierung zu erlernen. Außerdem werden Sets mit den Stationen zusammengestellt, um verschiedene automatisierte Anlagen nachzubauen.

EINSTELLUNGEN

4.1	Lemumgebung	Rein physikalisch (Planung + Ausführung)		ützt durch digitale ,IT-Integration")	Physisch, virt	cuell erweitert	Rein virtuell (Planung + Ausführung)	
4.2	Umgebungsskala		Verkleinert			Lebensgroß		
4.3	Arbeitssystemebene	Arbeitsort	Arbeits	system	W	erk	Netzwerk	
4.4	Enablers für Verädnerbarkeit	Mobilität	Modularität	Kompatibi	lität	Skalierbarkeit	Universalität	
4.5	Veränderbarkeitsdimensi onen	Layout & Logistik	Produktmerkmale	Produktde	sign	Technologie	Produktmengen	
4.6	IT-Integration	IT vor SOP (CAD, CAM	l, Simulation)	IT nach SOP (PPS	, ERP, MES)	IT nach Pr	oduktion (CRM, PLM)	


Zu welchem Zweck werden verschiedene IT-Integrationen eingesetzt:

Dieses Labor nimmt eine Fläche von 130 m2 ein, in der 20 Studenten, gruppiert in 5 Inseln, gleichzeitig arbeiten können. Der Bereich des Labors ist als dynamischer Raum konzipiert, in dem es 20 Stationen, 4 Roboter (2 industrielle und 2 kollaborative), 2 Kameras für künstliches Sehen und 6 Frequenzumrichter gibt, die auf verschiedene Weise bewegt und gruppiert werden können, um verschiedene reale Produktionsprozesse zu simulieren. Jede der Stationen wird von einem Industrieautomaten (Siemens, Omron, etc.) gesteuert und sie kommunizieren mit den anderen Stationen über einen industriellen Kommunikationsbus (Profibus, Etherr

Hinsichtlich der Stationen setzt sich das Labor aus folgenden 20 Stationen zusammen:

- 2 Verteil-/Förderstation
- 2 Sortierstation
- 2 Mess-Station
- 2 Pick-and-Place-Station
- 2 Vereinzelungsstation
- 1 Speicherstation
- 1 Fluid-Muskel-Press-Station
- 1 Verpackungsstation
- 1 Programmierstation
- 1 Pneumatisches Handling
- 1 Elektrische Bedienung
- 1 Lungenstation
- 1 Bearbeitungsstation
- 1 Ablagestation

• 1 I4.0 station

Hinsichtlich der Roboter besteht das Labor aus den folgenden 4:

- 2 Industrial Robots:
 - Robot ABB IRB120 (3 kg)
 - Robot Mitsubishi RV-2SDB

- 2 Kollaborative Roboter:
 - Universal Robot: UR3. (3kg)
 - Universal Robot: UR5 (5kg)

Was die Bildverarbeitungskamera betrifft, so besteht das Labor aus den folgenden:

2 Cognex Insight 5100

Bei den Frequenzumrichtern besteht das Labor aus den folgenden 6:

3 Siemens Sinamics G120C. Profinet-Profibus

3 Siemens Sinamics G120. Profinet-Profibus

PRODUKT

5.1	Material		Materi	ell (physisches	produkt		immateriell (Service)				
5.2	Produktform		Stück	gut		Schüttç	gut	Strömungsrodukte			
5.3	Produktherkunft	E	igene Entwicklun	g	Entwi	cklung durch Teilne	hmer	Externe Entwicklung			
5.4	Marktfähigkeit des Produktes	Auf	dem Markt verfüç	gbar	Am Markt w	erfügbar, aber nicht vereinfacht	didaktisch	h Nicht auf dme Markt verfügb			
5.5	Produktfunktionalität	Funk	ctionsfähiges Pro	odukt		ch angepasstes Pro schränkter Funktion			on / Anwendung Deonstration		
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon Te entwick		Annahme von Aufträgen			
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nach	teilnehmer	Bestimmt durch Aufträg			
5.8	Anzahl der Komponenten	1 Komponente	2-5 Komponenten	6-20 Komp	oonenten	21-50 Komponenten 51-100 Kon		nponenten	> 100 Komponenten		
5.9	Weitere Verwendungen des Produktes		rwendung/- ertung	Ausst	ellung	Werbegeschenk	Ver	kauf	Entsorgung		

Weitere Beschreibung der im LAB hergestellten Produkte

Dieses Labor kann nicht als Lernfabrik betrachtet werden. Sofern nicht einige Produktionsprozesse implementiert werden und einfache Produkte durch die Nutzung der Ausrüstung verwendet werden, dreht sich der Gesamtansatz des Labors nicht um die Produktion und Montage eines Produkts oder einer Produktfamilie.

Die für die Lernaktivitäten verwendete Methodik ist "Challenge based collaborative learning". Diese Herausforderungen können in vielen Fällen als Produkte betrachtet werden. Allerdings können die Herausforderungen von Team zu Team, von Gruppe zu Gruppe variieren. Auch die Reihenfolge und die Ziele der Herausforderungen sind unterschiedlich, immer mit dem Ziel, einen Lernprozess zu erfüllen und eine Reihe von Fähigkeiten zu erwerben. Es werden also unterschiedliche Arrangements des Labs verwendet.

Einige der Module des Labs wie z.B. die Festo Didaktik-Module sind tatsächlich skalierte Lernfabriken. In diesen Modulen werden kleine Bauteile mit unterschiedlichen Eigenschaften produziert, deren Daten in RFID-Chips erfasst werden.

Die Informationen der Tabelle müssen also gefiltert und im einzigartigen Kontext dieses Labs interpretiert werden.

DIDAKTIK

6.1	Kompetenzklassen	Fach- und Method	denkompetenzen		mmunikative etenzen	Persönlichke	itskompetenzen		und umsetzun Kompetennzei		
6.2	Dimensionen Lernziele	Kogr	nitiv		Affektiv		Psycho-motorisch				
6.3	Lernszenariostrategien	Anweisung	,	Vorführung		Geschloss	enes Szenario	Offenes Szenario			
6.4	Art der lernumgebung	Greenfie	Greenfield (Entwicklung der Fabrikumgebung) Brownfield (Verbesserung der bestehenden Fabrikumgeb								
6.5	Kommunikationskanal	Lerr	nen vor Ort (in Fabr	rikumgebung)			Fernverbindu	ng (zur Werksı	umgebung)		
6.6	Grad an Autonomie	Beauf	tragt	Selbs	tgesteuert/-reo	guliert	8	Selbstbestimm	t/-organisiert		
6.7	Rolle des Trainers	Präsentator	Modera	ator		Coach			Ausbilder		
6.8	Art der Ausbildung	Lernprogramm	Praktischer L	aborkurs	Sen	ninar	Works	nop Projektarbeit		tarbeit	
6.9	Standardisierung von Schulungen		Standardisierte Sc	hulungen			Individ	duelle Schulun	gen		
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus (en bloc)		hsel mit nen teilen	Bedarfso	ientiert	Dar	nach	
6.11	Auswertungsstufen	Feedback der teilnehmer	Lernen der Te	eilnehmer	Transfer in reale Fabrik		Wirtschaftlcihe der Sch	•	Return on trainings / F		
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstest	(mündlich)	Schriftlicher Bericht	Mündleihe		lcihe Präsentation Praktisch		Keine	

Spezifische Kompetenzen, die im Labor trainiert werden/mit den Technologien im LAB trainiert werden:

Das zentrale Element, an dem sich das gesamte Lernmodell ausrichtet, ist das KOLLABORATIVE LERNEN AUF DER BASIS VON HERAUSFORDERUNGEN.

Die Darstellung einer problematischen Situation, ihre Umwandlung in eine Herausforderung sowie der gesamte Prozess bis zur Erzielung eines Ergebnisses ist sowohl auf der Grundlage der technischen und spezifischen Kompetenzen jedes Programms strukturiert, als auch auf der Grundlage der übergreifenden Kompetenzen, die derzeit strategisch sind, wie z. B.:

autonomes Lernen, Teamarbeit, Orientierung auf außergewöhnliche Ergebnisse, digitale Kompetenzen, etc...

Problematische Situationen werden in allen Fällen an eine Klasse herangetragen, die in Teams konfiguriert ist, wobei der Arbeitsprozess es den Schülern ermöglichen muss, die Situation als Herausforderung zu erleben, und von dort aus müssen sie die Möglichkeit haben, das notwendige Wissen zu generieren, das die besten Lösungen bietet.

Die Annäherung des Modells durch Herausforderungen erfordert eine Neuinterpretation der Mechanik des Lernens. Die Interpretation, die am besten zum Modell passt, ist, das Lernen als einen Evolutionsprozess zu verstehen, für den die Schüler verantwortlich sind. Herausforderungsbasiertes Lernen ermöglicht ein Szenario, in dem die Schüler individuell und auf Teamebene in Aktion treten und ein Ergebnis produzieren. Dieses Ergebnis wird interpretiert, analysiert und diskutiert, um notwendige Änderungen vorzunehmen, um bei der nächsten Herausforderung höhere Ziele zu erreichen.

Die Hauptidee dieser Methodik besteht darin, Teams zu bilden und für sie einen Vertrag zu erstellen, in dem die von den Mitgliedern jedes Teams erworbenen Verpflichtungen enthalten sind. Diese Verträge werden sich entwickeln und verändern, wenn die Teams Erfahrungen sammeln. Bei der Arbeit in der Werkstatt müssen sich diese Teams selbst verwalten, indem sie die Aufgaben aufteilen, um die Herausforderung zu bewältigen. Der Einsatz von Maschinen erfolgt in der Regel einzeln oder in Paaren.

Diese Methodik ermöglicht es uns, intermodular zu arbeiten, so dass die Studenten an transversalen Kompetenzen durch Herausforderungen arbeiten können, die nahe an einer Geschäftsrealität sind. Der nächste Schritt wäre die Schaffung einer Lernfabrik, die den Betrieb der Werkstatt einer realen Werkstatt simuliert.

Verwendeter Lehrplan:

Iln diesem Labor arbeiten wir an dem Lehrplan, der dem Programm für den "Höheren Techniker in Automatisierung und Industrierobotik" EQF5 entspricht

Unter Berücksichtigung der schulischen Erstausbildung erfolgt die Nutzung dieses Labors durch 1 Zyklus: Höherer Techniker in Automatisierung und Industrierobotik (Stufe 5).

Der Zyklus nutzt das Labor im 2. Jahr und mit allen seinen Modulen. Die Gesamtstundenzahl

beträgt 650h, die sich wie folgt verteilen: Fortgeschrittene programmierbare Systeme (120h), Industrielle Robotik (100h), Industrielle Kommunikation (140h), Integration industrieller Automatisierungssysteme (140h), Industrielles Automatisierungs- und Robotikprojekt (50), Technisches Englisch (40) und Business and Entrepreneurship (60h). Trotzdem erfolgt die spezifische Nutzung der Werkstatt nur in den ersten 5 Fächern.

Fähigkeiten/geschult mit den Technologien im LAB

Zusätzlich zu den allgemeinen Fähigkeiten, die innerhalb der Automatisierung und Robotik erforderlich sind, werden verschiedene Fähigkeiten im Zusammenhang mit I 4.0 trainiert, wie z.B.:

- Konfiguration und Programmierung von BCR-, QR-, Data-Matrix-, RFID-Lesern, etc.
- Konfiguration und Programmierung von Bildverarbeitungskameras, mobilen Geräten, Tablets, etc.
- Identifikation durch Überwachung.
- Software-Virtualisierung. Virtuelle Maschine.
- Programm-Überwachung.
- Roboterprogrammierung (industriell / kollaborativ) mit integrierter Bildverarbeitung.
- Datendigitalisierung und -analyse.
- Internet der Dinge, IoT.
- Cybersecurity im industriellen Umfeld.
- Simulation des Prozesses durch einen Zwilling oder ein Spiegelbild.
- Datenerfassung und Überwachung lokal und in der Cloud.

7.1	Anzahl an Teilnehmern pro Schulung	1-5 Teilnehmer	5-10 Teilnehmer	10-15 Teilnehmer	15-30 Teilnehmer	30> Teilne	hmer	
7.2	Anzahl an standardisierten Schulungen	1 Training	2-4 Trainings	5-10 Trair	nings	> 10 Trainings		
7.3	Durchschnittliche Dauer einer Schulung	≤1 Tag	> 1 Tage bis ≤ 2 Tage	> 2 Tage bis ≤ 5 Tage	> 5 days bis ≤ 10 Tage	> 10 Tage bis ≤ 20 Tage	> 20 Tage	
7.4	Teilnehmer pro Jahr	< 50 Teilnehmer	50-200 Teilnehmer	201-500 Teilnehmer	501-1000 Teilnehmer	> 1000 Teiln	ehmer	
7.5	Kapazitätsauslastung	< 10%	> 10 bis ≤ 20%	> 20%bis ≤ 50%	> 50% bis ≤ 75%	> 75%	6	
7.6	LABgröße	≤ 100 qm	> 100 qm bis ≤ 300 qm	> 300qm bis ≤ 500qm	>500 qm bis ≤ 1000 qm	> 1000 (qm	
7.7	FTE im LAB	<1	2-4	5-9	10-15	> 15		

WEITERE INFORMATIONEN & ASPEKTE ZUR VERBESSERUNG

8.1	Weitere Informationen	Bilder	Video
8.2	Aspekt zur Verbesserung	Technisch	Methodologisch

Zu verbessernde Aspekte:

Der nächste Schritt zur Verbesserung des Labors wäre die Erstellung eines Digitalen Zwillings, um die Auswirkungen des Einsatzes von Robotern in Produktionslinien im Fab-Labor vorherzusehen. . Auf diese Weise würden wir beginnen, verschiedene Geräte des Robotiklabors mit den Maschinen des Bearbeitungslabors zu verbinden.

Einerseits könnte man auf diese Weise Prozesse optimieren, die Wartung verbessern usw. Andererseits würden die Studenten Erfahrungen mit Robotik und Automatisierung in einem realen Bearbeitungsraum machen.

Zur weiteren Information wurden einige Fotos in das Dokument mit aufgenommen:

Die im Labor verwendete Technologie

Die Nutzung des Labors

Das Layout des Labors

DHBW - Deutschland

Laborname:

DHBW Automation Labs

■ Allgemeiner Zweck /Ziel (kurze Zusammenfassung):

Industrienahe Ausbildung, fokussiert auf die industriellen Anforderungen der Unternehmen in unserer Region.

Jahr:

2009

Laborgröße (qm):

115

	Name of the LAB			Automa	ntion lab				MAIN PURPOSE		
	VET/HVET centre			DHBW-H	leidenheim				Education		х
GENERAL INFORMATION	Floor space of the lab (sqm)			1		Training		х			
	Main topic/learning content			Robotics, le		Research/Applied innovation		-			
	I4.0 related technologies					Robotics, M2		•			
	Learning content			Robot Programmi	ystems with Field lev	M2M, MES					
PURPOSE	Secondary purpose		Production management, Safety, Smart maintenance, Lean Production							mart maintenance, Lean Production	
	LAB type		Specific			Mixed			Learning Factory		
		Na	ame of the programme:	s carried out on the La	י	EQF Level	Lab hours	Nº subjects on the I	s on the lab Hour/Week x n° of weeks		dents (3)
			Robo	otics		6	80	1	12x16		8
LEARNING CONTENTS	Learning programmes/study		Production	Systems		6	40	1	12x16		8
	programmes/levels		Automation	n Systems		6	40	1	12x16		8
			-			-	_	=	-		
			-			_	_				
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Ce	ell 9
	Category of cell	Robotics	learning Factory	-	-	-	-	-	-		-
	Nº machines	3	2	-	-	-	-	-	-		-
SETTINGS	I4.0 Enabler technologies used and	Robotics	M2M								
	implementation level	Sensors/Actuators	SCADA,MES								

BETRIEBSMODELL

1.1	Betreiber	Akademische Institution				Nicht-akademische Institution Gewinnorientierter E									
1.1	253.525	Universitäty	Hochschule	BA	Berufssch	ule/Gymnasiur	n	Kammer Gewerkschaft Arbeitgeberv erband		Industrielles Netzwerk	Beratung	Produzierendes Unternehmen			
1.2	Trainer	Professor	Forscher		Studentische	udentische Hilfkraft Technsicher Experte/Int. Spezialist				Spezialist	Berater	Pädagoge			
1.3	Entwicklungen		Eigene Entwi	cklung			Ext	tern geförderte	Entwicklung		E	xterne Entwicl	dung		
1.4	Anfangsfinanzierung	Interne Mittel				Öfentliche Mittel						Geschäftsmit	tel		
1.5	Laufende Finanzierung		Interne Mi	ittel				Öfentliche	Mittel		Geschäftsmittel				
1.6	Förderkontinuität	Kurzfris	Kurzfristige Finanzierung z.B.: einzelne Veranstaltungen)				Mittelfristige Förderungen (z.B. Projekte und Programme <3Jahre)					Langfristige Förderung (Prohejte und Programme > 3 Jahre)			
1.7	Geschäftsmodell für		Offe	ene Mode	lle										
1.7	Schulungen	Club-M	Modelle		Kursgebühre	en	Geschlossene Modelle (Trainingsprog n				amme nur fur Einzelunternehmen				

Beschreibung der Finanzierungsmethoden:

Die DHBW ist eine gemeinnützige, freie Hochschule aus Deutschland, was in diesem Fall bedeutet, dass die Landesregierung 100 % der Anteile besitzt. Es ist möglich, dass die DHBW mit zusätzlichen Mitteln Drittmittelprojekte hat.

An der DHBW haben wir etwa 10 Campusse, Heidenheim ist einer davon. Auf diesem Campus haben wir viele verschiedene Labs, die im Gebäude verteilt sind. 3 dieser LABs werden in dieser Beschreibung beschrieben.

Das Automation LAB, das Fab LAB und das Research LAB (Labor für Strukturanalyse).

Einige kleinere LABs, wie das VR und Eye Tracking LAB und LABs für Medizin und Informationstechnologien sowie LABs von anderen Campus sind in dieser Beschreibung nicht enthalten.

2.1	Hauptzweck		Ausb	oildung					Berufsbildu	g	,				Onderzo	ek		
2.2	Sekundärer Zweck	Т	estumgebung	g/Pilotumge	bung		Industrie	produktion			Innovati	onstransfer			Anzeige für F	Produktion		
				Studierend	е				Arbeitn	ehmer			·					
2.3	Ziepgruppen für Bildung und Training	Schüler	Pachalar	Montor	Doktorandon	Auszubildende	Fachkraft	Ausgebilde				Managers		Unternehmer	Freiberufler	Arbeitslo	s Öffen zugän	
			Bachelor Master Doktoranden			Auszublideride	raciinait	Fachkraft	Fachkraf	Untere		Mittleres Management	Top- Management					
2.4	Gruppenkonstellation		hom	ogeen		heterogen (Wissensstand, Hierarchie, Stu					Hierarchie, Stud	ierende + Mitar	beiter, etc.)					
2.5	Zielindustrien		Maschinen- u	ınd Anlagen	bau	Automobil Logistik				Т	ransport		FMCG	Lu	t- und Raum	ıfahrt		
2.5	Zielindustrien		Chemisch	ne Industrie		E	ektronik		Ko	Konstruktion Versicherungen		ngen/Bankwes	en	Textil				
2.6	Fachbezogener lerninhalt		oduktionsmanage nt & Organisation.			Lean-Management Automatisierung			ing C	PPS	Abeitssystem Itung	gesta HM	Desig	n Intra	alogistik, Des Managemen			
2.7	Rolle des LAB für die Forschung				Forschungsobjekt						F	actor die onderz	oek mogelijk r	naakt				
2.8	Forschungstehmen	Produkti	Produktionsmanagement & Organisation				Ressourceneffizienz Lean Management			Automatisier	rung CPP	S Verände	erbarkeit	НМІ	Didaktik			

Studiengänge und das EQR-Niveau der einzelnen Programme bezogen auf den LAB:

Automatisierungssysteme und Produktionssysteme als Teil des Studiengangs Wirtschaftsingenieurwesen, das ECF-Niveau dieser Programme ist 6.

Studiengang Maschinenbau, das EQR-Niveau ist 6.

Workshops für Schüler, das EQF-Niveau ist 2.

Beschreibung der Beziehung zwischen den einzelnen Studienprogrammen und dem LAB:

Die Studiengänge, die die meiste Zeit im LAB verbringen, sind die Studiengänge Wirtschaftsingenieurwesen und der Studiengang Maschinenbau.

Die Master aller technischen Studiengänge haben Wahlveranstaltungen innerhalb des LAB.

Andere Studiengänge wie z.B. die Informatik-Studiengänge und alle Wirtschafts-Studiengänge haben ebenfalls Zugang zum LAB, nutzen es aber nicht in demselben Umfang wie die vorgenannten Studiengänge.

PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Service	Service	ce	Produktlebenszyklus
3.2	LAB Lebenszyklus	Investitionsplanung	Fabrikkonzept	Prozessplanung	Hochlauf	Fertigung	Montage	Service	Wartu	ıng	LAB Lebenszyklus
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequenzierung	Produktions termin		Fertigung	Montage	Service	Kommissior Verpack		Versand
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle	Prüfung	Fertigung	Montage	Service	Wartung		Modernisierung
3.5	Indirekte Funktionen	SCM	Vertrieb	Eink	Einkauf		Finazen/C	ontrolling		Q	M
3.6	Materialfluss		Kontinuierliche Pro	oduktion		Dis			fertigung		
3.7	Prozesstyp	Massen	produktion	Serienpro	oduktion		Kleinserienfe	rtigung		Kleii	nserienfertigung
3.8	Fertigungsorganisation	Ortsgebund	dene Fertigung	Werkbank	fertigung		Werkstattfer	tigung		Werkstattfertigung	
3.9	Automatisierungsgrad	Ма	anuell	Teila	utomatisiert/hybri	hybride Automatisierung		ng		utomatisc	h
3.10	Fertigungsmethoden	Schneiden	neiden Trad. Primäre For		Additive Fertigung	Additive Fertigung Fügen		Beschichtung		Änderung	Materialeigenschaften
3.11	Fertigungstechnologien				Chemisch		Biologisch				

Spezifische Ausrüstung, die im LAB verwendet wird:

Das DHBW-Automatisierungslabor umfasst zwei Technologien.

Robotik:

In der Robotik lehren wir den standardmäßigen Einsatz von Industrierobotern. Ein wichtiger Aspekt ist der Umgang mit funktionaler Sicherheit. In weiteren Workshops haben wir Projekte zum Aufbau von Roboterzellen und zur Planung eines industriellen Prozessablaufs.

Lernfabrik:

In diesem Teil des LABs lehren wir verschiedene Ebenen der Automatisierung. In der Feldebene werden Sensoren, Aktoren und Automatisierungskomponenten wie Transfersysteme, Lagersysteme und Materialhandling eingesetzt.

In der Steuerungsebene wird SPS-Technik, Feldbusse und M2M-Kommunikation eingesetzt.

In der Managementebene haben wir SCADA-Systeme und Teile eines MES-Systems sowie Predictive Maintenance. Wir haben heute keine Verbindung zur Enterprise EAI-Ebene.

SETTING

4.1	Lernumgebung	Rein physikalisch (Planung + Ausführung)	digitale F	unterstützt durch abrik (siehe "IT- egration")	Physisch, virt	uell erweitert	Rein virtuell (Planung + Ausführung)	
4.2	Umgebungsskala	Ve	erkleinert			Lebens	groß	
4.3	Arbeitssystemebene	Arbeitsort Arbeitssystem				erk	Netzwerk	
4.4	Enablers für Verädnerbarkeit	Mobilität Modularität Kompatibili		lität	Skalierbarkeit	Universalität		
4.5	Veränderbarkeitsdimensionen	n Layout & Logistik Produktmerk male Produktdesi		sign	Technologie	Produktmengen		
4.6	IT-Integration	IT vor SOP (CAD, CAM, S	imulation)	IT nach SOP (PPS	, ERP, MES) IT nach P		roduktion (CRM, PLM)	

Zu welchem Zweck werden verschiedene IT-Integrationen eingesetzt:

Studierende der DHBW führen Projekte im Bereich Advanced Manufacturing durch.

Einige Beispiele sind die Visualisierung von Roboterbahnen mit AR, die Implementierung eines OPC-Servers für die vorausschauende Instandhaltung oder ein Agent zur Optimierung des Auftragsmanagements.

PRODUKT

5.1	Material		Materie	ell (physisches	produkt		I	mmateriell (Se	rvice)	
5.2	Produktform		Stückg	jut		Schüttg	ut	Strömu	ngsrodukte	
5.3	Produktherkunft	Eiç	gene Entwicklung)	Entwi	cklung durch Teilnel	nmer	Externe	Entwicklung	
5.4	Marktfähigkeit des Produktes	Auf c	lem Markt verfügl	bar	Am Markt v	erfügbar, aber nicht vereinfacht	didaktisch	Nicht auf dme Markt verfügbar		
5.5	Produktfunktionalität	Funkt	ionsfähiges Proc	dukt		ch angepasstes Proeschränkter Funktion			on / Anwendung Deonstration	
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon Te entwick		Annahme	von Aufträgen	
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nach	teilnehmer Bestim		durch Aufträge	
5.8	Anzahl der Komponenten	1 Komponente	2-5 Komponenten	6-20 Komp	oonenten	21-50 Komponenten 51-100 K		nponenten	> 100 Komponenten	
5.9	Weitere Verwendungen des Produktes	Wiederverwend	ung/-verwertung	Ausst	ellung	Werbegeschenk Ver		kauf	Entsorgung	

DIDAKTIK

6.1	Kompetenzklassen	Fach- und Method	lenkompetenzen		ommunikative etenzen	Persönlichkei	tskompetenzen		und umsetzun Kompetennzei	
6.2	Dimensionen Lernziele	Kogr	nitiv		Affektiv			Psycho-m	notorisch	
6.3	Lernszenariostrategien	Anweisung		Vorführung		Geschlosse	enes Szenario	C	Offenes Szenar	io
6.4	Art der lernumgebung	Greenfie	eld (Entwicklung de	r Fabrikumgeb	ung)	Brownfie	eld (Verbesserur	ng der bestehe	nden Fabrikum	gebung)
6.5	Kommunikationskanal	Leri	nen vor Ort (in Fab	rikumgebung)			Fernverbindu	ıng (zur Werks	umgebung)	
6.6	Grad an Autonomie	Beauf	tragt	Selbs	stgesteuert/-reg	uliert	;	Selbstbestimmt/-organisiert		
6.7	Rolle des Trainers	Präsentator	Modera	ator		Coach			Ausbilder	
6.8	Art der Ausbildung	Lernprogramm	Praktischer L	aborkurs	Sem	inar	Works	shop Proj		tarbeit
6.9	Standardisierung von Schulungen		Standardisierte Sc	tandardisierte Schulungen			Indivi	duelle Schulur	chulungen	
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus (en bloc)	Im Wechsel mit praktischen teilen		Bedarfsorientiert		Dar	ıach
6.11	Auswertungsstufen	Feedback der teilnehmer	Lernen der Te	Teilnehmer Transfer in re		Transfer in reale Fabrik		e Auswirkung Julung	Return on tr	ainings / ROI
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstest (mündlich)	Schriftlicher Bericht Mündlcihe		e Präsentation Praktische		e Prüfung	Keine

Verwendetes Curriculum:

Modulhandbuch Engineering and Management, Modulhandbuch Mechanical Engineering

https://www.dhbw.de/fileadmin/user/public/SP/HDH/Wirtschaftsingenieurwesen/Allgemeines Wirtschaftsingenieurwesen.pdf

https://www.dhbw.de/fileadmin/user/public/SP/HDH/Maschinenbau/Allgemeiner Maschinenbau.pdf

METRICS

7.1	Anzahl an Teilnehmern pro Schulung	1-5 Teilnehmer	5-10 Teilnehmer	10-15 Teilnehmer	15-30 Teilnehmer	30> Teilnehmer
7.2	Anzahl an standardisierten Schulungen	1 Training	2-4 Trainings	5-10 Tr	ainings	> 10 Trainings
7.3	Durchschnittliche Dauer einer Schulung	≤1 Tag	> 1 Tage bis ≤ 2 Tage	> 2 Tage bis ≤ 5 Tage	> 5 days bis ≤ 10 Tage	> 10 Tage bis < 20 Tage > 20 Tage
7.4	Teilnehmer pro Jahr	< 50 Teilnehmer	50-200 Teilnehmer	201-500 Teilnehmer	501-1000 Teilnehmer	> 1000 Teilnehmer
7.5	Kapazitätsauslastung	< 10%	> 10 bis ≤ 20%	> 20%bis ≤ 50%	> 50% bis ≤ 75%	> 75%
7.6	LABgröße	Bgröße ≤ 100 qm		> 300qm bis ≤ 500qm	>500 qm bis ≤ 1000 qm	> 1000 qm
7.7	FTE im LAB	< 1	2-4	5-9	10-15	> 15

WEITERE INFORMATIONEN UND ASPEKTE ZUR VERBESSERUNG

8.1	Weitere Informationen	Bilder	Video
8.2	Aspekt zur Verbesserung	Technisch	Methodologisch

Weitere Informationen (Link zu Video):

https://www.heidenheim.dhbw.de/virtueller-rundgang

https://my.matterport.com/show/?m=SCEKg6tnmtc&sr=2.96,-.94&ss=87

Aspekte zur Verbesserung:

Die größte Einschränkung ist der begrenzte Platz. Das Labor sollte in zwei Räume aufgeteilt werden.

Aspekte wie Virtualisierung und Simulation sollten einbezogen werden. Das M2M zwischen den Zellen und dem Web sollte verbessert werden.

Laborname:

DHBW Automation Labs

■ Allgemeines Ziel/Zweck (kurze Zusammenfassung):

Industrienahe Ausbildung, fokussiert auf die industriellen Anforderungen der Unternehmen in unserer Region.

Jahr:

2009

Laborgröße (qm):

115

■ Allgemeine Informationen - Übersichtstabelle

	Name of the LAB			Fa	bLab					MAIN PURPOSE		
	VET/HVET centre			DHBW-	Heidenheim					Education		-
GENERAL INFORMATION	Floor space of the lab (sqm)				115					Training		х
	Main topic/learning content				Re	search/Applied innovation		Х				
	I4.0 related technologies			, Identificati	on, Al							
	Learning content				lopment, A	l						
PURPOSE	Secondary purpose											
	LAB type	Product Development Specific Mixed								Learning Factory		
		N	lame of the programm	es carried out on the L	ab	EQF Level	Lab hours	Nº subje	cts on the lab	Hour/Week x nº of weeks	Nº stude	nts (3)
		Robotics 6 40							1	12x16	8	
LEARNING CONTENTS	Learning programmes/study programmes/levels		ed Systems	40		1	12x16	8				
	programmes/levels		Studen	t Projects		6	80		1	12x16	8	
				=		-	-			_	_	
						_				_		
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6		Cell 7	Cell 8	Cell	9
	Category of cell	Mobile Robotics	Collaboration Robots	3d-Printing	Electronics develop Workspace	=	-		-	-	-	
	Nº machines	3	2	3	2	-	-		_	-	-	
SETTINGS	I4.0 Enabler technologies used and	Robotics	Robotics	Additive Manufacturing	Sensors/Actuators							
	implementation level	Sensors/Actuators	Autonomous Systems	M2M	IOT, CPS							

OPERATIONAL MODEL

		Akader	nische Institutio	on			Nic	cht-akademisc	akademische Institution				tierter Betreiber	
1.1	Betreiber	Universitäty	Hochschule	ВА	Berufssch	ule/Gymnasiur	m	Kammer	Gewerkschaft	Arbeitgeberv erband	Industrielles Netzwerk	Beratung	Produzierendes Unternehmen	
1.2	Trainer	Professor	Forscher		Studentisch	e Hilfkraft		Technsic	her Experte/Int.	Spezialist	Berater	er Pädagoge		
1.3	Entwicklungen		Eigene Entwi	cklung			Extern geförderte Entwicklung					xterne Entwick	dung	
1.4	Anfangsfinanzierung		Interne Mi	ittel		Öfentliche Mittel						Geschäftsmit	tel	
1.5	Laufende Finanzierung		Interne Mi	ittel				Öfentliche	Mittel			Geschäftsmittel		
1.6	Förderkontinuität	Kurzfris	stige Finanzierur Veranstaltur		inzelne	Mittelfristige Förderungen (z.B. Projekte und Pro			rogramme		tige Förderung (Prohejte und Programme > 3 Jahre)			
1.7	Geschäftsmodell für		Offe	ene Mode	lle			Gosoble	ossana Madalla	/Trainings prog				
1.7	Schulungen	Club-N	Modelle		Kursgebühre	ən	Geschlossene Modelle (Trainingsprogramme r			raillile Hur Tur	ur für Einzelunternehmen			

Beschreibung der Finanzierungsmethoden:

Die DHBW ist eine gemeinnützige, freie Hochschule aus Deutschland, was in diesem Fall bedeutet, dass die Landesregierung 100 % der Anteile besitzt. Es ist möglich, zusätzliche Drittmittelprojekte mit zusätzlichen Mitteln zu haben.

ZWECK & ZIELSETZUNG

2.1	Hauptzweck		Ausbildur	ng				`	Berufsbildu	ng			,	,	Forschung			
2.2	Sekundärer Zweck		Testumgebung/Pilo	tumgebung			Industrie	produktion			Innovationstrans	sfer			Anzeige für F	roduktion		
			Studio	erende					Ar	beitnehmer								
2.3	Ziepgruppen für Bildung und Training	Schüler	Bachelor	Master	Doktoran	Ausgebildende Fachkraft Ausgebildete Ungelernte Fachkraft Fachkraft								Unternehmer	Freiberufler	Arbeitslos	Öffentlici zugänglic	
			Dacricio	Waster	den	Auszubildende Fachkraft Fachkraft Fachkraft Unteres Management Management Top-Management						anagement						
2.4	Gruppenkonstellation		Homogee	n						heterogen (Wisse	nsstand, Hierarch	nie, Studieren	de + Mitarbeiter,	etc.)				
2.5	Zielindustrien		Maschinen- und A	nlagenbau		Autor	mobil		Logis	tik		Transport			FMCG	Luft- u	nd Raumfahr	ırt
2.5	Zielindustrien		Chemische Inc	dustrie		Elekt	ronik		Konstru	ktion	Versio	cherungen/Ba	nkwesen		Textil			
2.6	Fachbezogener leminhalt		onsmanagement rganisation.	Ressourcen	effizienz	Lean-Man	agement	Auton	natisierung	CPPS	Abeitssystemgestaltung HMI		НМІ			ogistik, Design &		
2.7	Rolle des LAB für die Forschung		·			Forschungsobjekt Factor						Factor di	e onderzoek mo	gelijk maakt				
2.8	Forschungstehmen	Prodi	uktionsmanagement	& Organisat	rganisation Ressourceneffizienz Lean Management Automatisierung					sierung	CPPS	Veränderb	arkeit	нмі с	idaktik			

Studiengänge und das EQR-Niveau der einzelnen Programme in Bezug auf die LAB:

Wirtschaftsingenieurwesen, das EQR-Niveau dieser Studiengänge ist 6.

Maschinenbau Programm, EQF-Niveau ist 6.

Informatik Programm, EQF-Niveau ist 6.

Workshops für Schüler, EQF-Niveau ist 2.

Beschreibung der Beziehung zwischen den einzelnen Studiengängen und dem LAB:

Die Studiengänge, die die meiste Zeit im LAB verbringen, sind der Studiengang Wirtschaftsingenieurwesen und der Studiengang Maschinenbau sowie die Informatik.

Die Master aller technischen Studiengänge haben Wahlveranstaltungen im LAB

Andere Studiengänge wie die Wirtschaftsinformatik und alle kaufmännischen Studiengänge haben Zugang zum LAB, nutzen es aber bisher nicht.

PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Service	Serv	vice	Produktlebenszyklus	
3.2	LAB Lebenszyklus	Investitionsplanung	Fabrikkonzept	Prozessplanung	Hochlauf	Fertigung	Montage	Service	Wart	tung	LAB Lebenszyklus	
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequenzierung	Produktions termin		Fertigung	Montage	Service	Kommissio Verpad		Versand	
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle	Prüfung	Fertigung	Montage	Service	Wart	tung	Modernisierung	
3.5	Indirekte Funktionen	SCM	Vertrieb	Eink	auf	HR	Finazen/C	Controlling	QM			
3.6	Materialfluss		Kontinuierliche Pro	oduktion				Diskrete	fertigung			
3.7	Prozesstyp	Massen	produktion	Serienpro	oduktion		Kleinserienfe	rtigung		Klei	nserienfertigung	
3.8	Fertigungsorganisation	Ortsgebund	dene Fertigung	Werkbank	dertigung		Werkstattfer	tigung		Werkstattfertigung		
3.9	Automatisierungsgrad	Ma	anuell	Teilautomatisiert/hybr		omatisiert/hybride Automatisierung				automatisc	h	
3.10	Fertigungsmethoden	Schneiden Trad. Primäre For		ormgebung Additive Fertigung		Additive Fertigung Fügen		Beschichtung		Änderung Materialeigenschaften		
3.11	Fertigungstechnologien		Physisch			Chemisch	•		E	Biologisch		

Spezifische Ausrüstung, die im LAB verwendet wird:

Das DHBW FabLab umfasst mehrere Technologien.

Robotik

Im Bereich Robotik lehren wir den Einsatz von kollaborierenden Robotern. Ein wichtiger Aspekt ist der Umgang mit Human Robotics Interaction. Zusätzlich haben wir einige mobile Roboter. Wir lehren die Ebenen der autonomen Systeme und die notwendigen Sensorsysteme wie Cams, Lidar, Ultrasonic.

Lernarbeitsplatz

In diesem Teil des Labors geht es um die Entwicklung von IOT-Projekten mit eingebetteten Systemen. Die 3D-Drucker sind in dieser Technologie involviert.

EINSTELLUNGEN

4.1	Lernumgebung	Rein physikalisch (Planung + Ausführung)	digitale F	unterstützt durch abrik (siehe "IT- egration")	Physisch, virt	uell erweitert	Rein virtuell (Planung + Ausführung)	
4.2	Umgebungsskala	Ve	erkleinert			Lebens	sgroß	
4.3	Arbeitssystemebene	Arbeitsort	Arbe	eitssystem	W	erk	Netzwerk	
4.4	Enablers für Verädnerbarkeit	t Mobilität Modularität Kompatibilität		lität	Skalierbarkeit	Universalität		
4.5	Veränderbarkeitsdimensionen	Layout & Logistik	Produktmerk Produktde		sign	Technologie	Produktmengen	
4.6	IT-Integration	IT vor SOP (CAD, CAM, S	imulation)	IT nach SOP (PPS	, ERP, MES)	IT nach Pr	Produktion (CRM, PLM)	

Zu welchem Zweck werden verschiedene IT-Integrationen eingesetzt:

Studierende der DHBW realisieren Projekte im Bereich IOT, CPS und Robotik

Einige Projekte sind die Realisierung von mobilen Robotern oder speziellen Handhabungsgeräten für bestimmte Prozesse. Geräte für den Remote-Betrieb von intelligenten Systemen wie Home Farming.

PRODUKT

5.1	Material		Materie	ell (physisches	produkt		I	mmateriell (Se	rvice)		
5.2	Produktform		Stückç	jut		Schüttg	ut	Strömu	ngsrodukte		
5.3	Produktherkunft	Eiç	gene Entwicklung)	Entwi	cklung durch Teilnel	nmer	Externe	Entwicklung		
5.4	Marktfähigkeit des Produktes	Auf c	dem Markt verfüg	bar	Am Markt v	verfügbar, aber nicht vereinfacht	didaktisch	Nicht auf dm	e Markt verfügbar		
5.5	Produktfunktionalität	Funkt	ionsfähiges Prod	dukt		ch angepasstes Pro eschränkter Funktion			on / Anwendung Deonstration		
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon Te entwick		Annahme	von Aufträgen		
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nach	teilnehmer	Bestimmt	durch Aufträge		
5.8	Anzahl der Komponenten	1 Komponente	2-5 Komponenten	6-20 Komp	oonenten	21-50 Komponenten	51-100 Kon	Komponenten > 100 Komponenter			
5.9	Weitere Verwendungen des Produktes	Wiederverwend	ung/-verwertung	Ausst	ellung	Werbegeschenk	Ver	kauf	Entsorgung		

Weitere Beschreibung der im LAB gefertigten Produkte:

Kleine Giveaways mit 3D-Drucker oder Lasercutter. Kleine Roboter mit Differenzialantrieb auf Basis von Arduino oder vergleichbarer Plattform.

Prototypen für Roboter, die getestet und weiterentwickelt werden sollen.

DIDAKTIK

6.1	Kompetenzklassen	Fach- und Method	lenkompetenzen		ommunikative etenzen	Persönlichkei	tskompetenzen		und umsetzun Kompetennze	
6.2	Dimensionen Lernziele	Kogr	nitiv		Affektiv			Psycho-m	notorisch	
6.3	Lernszenariostrategien	Anweisung		Vorführung		Geschlosse	enes Szenario	C	Offenes Szenar	io
6.4	Art der lernumgebung	Greenfie	ld (Entwicklung de	r Fabrikumgeb	ung)	eld (Verbesserur	rbesserung der bestehenden Fabrikumgebung)			
6.5	Kommunikationskanal	Leri	nen vor Ort (in Fab	rikumgebung)			Fernverbindu	ung (zur Werks	umgebung)	
6.6	Grad an Autonomie	Beauf	tragt	Selbs	stgesteuert/-reg	uliert	:	Selbstbestimn	nt/-organisiert	
6.7	Rolle des Trainers	Präsentator	Modera	ator		Coach			Ausbilder	
6.8	Art der Ausbildung	Lernprogramm	Praktischer L	aborkurs	Sem	inar	Works	shop	Projek	tarbeit
6.9	Standardisierung von Schulungen		Standardisierte Sc	hulungen			Indivi	duelle Schulur	ngen	
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus (en bloc)	Im Wechsel m	•	Bedarfsorientiert		Dar	nach
6.11	Auswertungsstufen	Feedback der teilnehmer	I lernen der leilnehmer I Iranster in reale Fahrik I					Wirtschaftlcihe Auswirkung der Schulung		ainings / ROI
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstest (mündlich)	Schriftlicher Bericht	Mündlcihe Präsentation		Praktische Prüfung		Keine

Verwendetes Curriculum:

Modulhandbuch Engineering and Management, Modulhandbuch Mechanical Engineering

https://www.dhbw.de/fileadmin/user/public/SP/HDH/Wirtschaftsingenieurwesen/Allgemeines Wirtschaftsingenieurwesen.pdf

https://www.dhbw.de/fileadmin/user/public/SP/HDH/Maschinenbau/Allgemeiner_Maschinenbau.pdf

METRIK

7.1	Anzahl an Teilnehmern pro Schulung	1-5 Teilnehmer	5-10 Teilnehmer	10-15 Teilnehmer	15-30 Teilnehmer	30> Teilne	ehmer
7.2	Anzahl an standardisierten Schulungen	1 Training	2-4 Trainings	5-10 Tr	ainings	> 10 Train	nings
7.3	Durchschnittliche Dauer einer Schulung	≤1 Tag	> 1 Tage bis ≤ 2 Tage	> 2 Tage bis ≤ 5 Tage	> 5 days bis ≤ 10 Tage	> 10 Tage bis ≤ 20 Tage	> 20 Tage
7.4	Teilnehmer pro Jahr	< 50 Teilnehmer	50-200 Teilnehmer	201-500 Teilnehmer	501-1000 Teilnehmer	> 1000 Teilr	nehmer
7.5	Kapazitätsauslastung	< 10%	> 10 bis ≤ 20%	> 20%bis ≤ 50%	> 50% bis ≤ 75%	> 759	%
7.6	LABgröße ≤ 100 q		> 100 qm bis ≤ 300 qm	> 300qm bis ≤ 500qm	>500 qm bis ≤ 1000 qm	> 1000	qm
7.7	FTE im LAB	< 1	2-4	5-9	10-15	> 15	

WEITERE INFORMATIONEN UND ASPEKTE ZUR VERBESSERUNG

8.1	Weitere Informationen	Bilder	Video
8.2	Aspekt zur Verbesserung	Technisch	Methodologisch

Verbesserungsaspekte:

Die größte Einschränkung ist die Begrenzung im Raum.

Aspekte wie Virtualisierung und Simulation sollten einbezogen werden. Es sollte ein grundlegendes Framework und eine Infrastruktur für CPS bereitgestellt werden.

Da Vinci College - Niederlande

Laborname:

Sustainability factory (Duurzaamheidsfabriek)

Allgemeines Ziel/Zweck (kurze Zusammenfassung):

Auf diesen Etagen werden die Schüler praktisch für ihren zukünftigen Beruf ausgebildet. Die Art und Weise, wie die Ausbildung von MBO (Berufsausbildung) in unserer Fachschulabteilung gestaltet ist, ist eine hybride Art des Lernens. Wir versuchen so viel wie möglich gemeinsam mit Firmen zu unterrichten, oder noch wichtiger, wir versuchen an realen Aufträgen von Firmen zu arbeiten. Wir glauben, dass die Zusammenarbeit mit Unternehmen zu besser ausgebildeten Fachkräften führen wird.

Jahr:

2010

Laborgröße (qm):

1075 + 800

■ General information - summary table

	Name of the LAB			Duurzaamheids	sfabriek 1st floor					MAIN PURPOSE		
	VET/HVET centre			Davino	i College					Education		х
GENERAL INFORMATION	Floor space of the lab (sqm)			10	075					Training		Х
	Main topic/learning content	Machinin	g, CNC machining, A	dditive Manufacturing	, Welding, Proces e	ngineering, Indu	strial 3D printing		Re	search/Applied innovation		-
	I4.0 related technologies				Additive Mar	nufacturing, Mob	pile technologies,	Robotics				
	Learning content			Conventional lat	he/milling machining	, CNC machining	, Additive Manut	facturing, We	elding, Water c	utting		
PURPOSE	Secondary purpose				Production, Sa	afety, I4.0 relate	d topics, smart r	naintenance				
	LAB type		Specific			Mixed				Learning Factory		
		Na	ame of the programme	s carried out on the La	י	EQF Level	Lab hours	Nº subject	ts on the lab	Hour/Week x nº of weeks	Nº stuc	lents (3)
		E	ngineer MBO level (M	/liddenkader engineer)	3/4	400		-	20x40		_
LEARNING CONTENTS	Learning programmes/study		Electrotechn	ical Engineer		3/4	400		-	20x40		-
LEARINING CONTENTS	programmes/levels		Installation	techniques		3/4	400		-	20x40		_
			Metal and proc	es engineering		3/4	400		-	20x40		_
			-						_	-		_
	Nº of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	C	ell 7	Cell 8	Ce	ell 9
	Category of cell	Lathes	Mills	Additive Manufacturing	Liquid Calibration station	Welding	Conventional machining machines	Water Cut	ting Machine	Arg Reality Welding	С	NC
SETTINGS	Nº machines	7	3	4	1	8	10		1	10		5
	I4.0 Enabler technologies used and implementation level	Additive Manufacturing	Welding simulator	AR/VR								

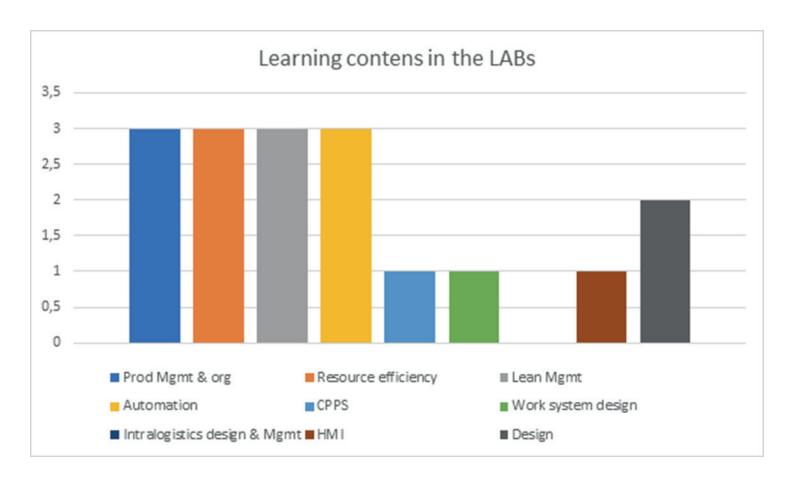
	Name of the LAB			Duurzaamheids	fabriek 2nd floor				MAIN PURPOSE	
	VET/HVET centre			Davinci	College				Education	-
GENERAL INFORMATION	Floor space of the lab (sqm)			81	00				Training	-
	Main topic/learning content		Smart Technology	/ Lab, Drive Technolog	gy Lab, Control Teo	chnology Lab, Lex	:Lab		Research/Applied innovation	-
	I4.0 related technologies				Additive Ma	nufacturing, Mobi	le technologies,	Robotics		•
	Learning content			F	Robots, Production	Lane, Solar Pane	el Technology, IC	OT, Drive engines		
PURPOSE	Secondary purpose				Pro	duction, Safety, I	4.0 related topic	S		
	LAB type		Specific			Mixed			Learning Factory	
		Na	ame of the programme	s carried out on the Lat)	EQF Level	Lab hours	N° subjects on the la	Hour/Week x nº of weeks	Nº students (3)
		Er	ngineer MBO level (N	Middenkader engineer)		3/4	400	-	20x40	=
	Learning programmes/study		Electrotechr	nical Engineer		3/4	400	-	20x40	=
LEARNING CONTENTS	programmes/levels		Installation	techniques		4	400	-	20x40	=
			Smart Te	chnology		4	400	-	20x40	=
			House of Ene	rgy Transition		2/3/4	400	-	20x40	=
						_	_	-	-	-
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell 9
SETTINGS	Category of cell	Robotino	MPS Robot	Production Lane	PLC	Siemens logo	Pneumatic Feisto	Mech prod plate	Laser cutter	loT/lloT
oznikao	Nº machines	2	-	10	10	20	2	1	2	A lot
	I4.0 Enabler technologies used and implementation level									

ÜBERBLICK ÜBER KONSORTIALPARTNER VET/VHET ZENTREN LABS

Das endgültige Modell von EXAM zur Beschreibung der AM LABs von Berufsbildungszentren wurde von Curt Nicolin Gymnasiet und Miguel Altuna evaluiert. Die Tabellen machen den Vergleich von LABs weniger zeitaufwendig und es erleichtert auch den Vergleich zwischen LABs und Lernfabriken.

Im Folgenden finden Sie eine gründliche Übersicht und einen Vergleich zwischen den LABs von Curt Nicolin Gymnasiet und Miguel Altuna. Die folgende Übersicht ist dazu bestimmt, die Einfachheit des Vergleichs von LABs zu zeigen, wenn die Tabellen im endgültigen Modell von EXAM 4.0 zur Beschreibung der AM LABs von Berufsbildungszentren verwendet werden.

Operatives Modell:


In der ersten Tabelle des Modells ist leicht abzulesen, dass sowohl das Curt Nicolin Gymnasiet als auch Miguel Altuna akademische Einrichtungen sind und entweder eine Berufsschule/ein Gymnasiet oder ein College.

Curt Nicolin Gymnasiet verwendet alle auswählbaren Mittel in der Tabelle, also interne-, öffentliche- und Firmenmittel, sowohl für die Anfangsfinanzierung als auch für die laufende Finanzierung. Miguel Altuna Machining LAB nutzt interne und öffentliche Mittel für die Anschubfinanzierung und öffentliche und Firmenmittel für die laufende Finanzierung. Die Finanzierungskontinuität ist für Curt Nicolin Gymnasiet kurz-, mittel- und langfristig. Langfristige Finanzierung ist jedoch die einzige Methode, die bei Miguel Altuna verwendet wird.

Zweck und Ziele:

Der Hauptzweck für Curt Nicolin Gytmnasiet's LAB ist Bildung und Berufsausbildung. Der Hauptzweck für beide LABs von Miguel Altuna sind Berufsausbildung und Forschung. Die Zielgruppen für Training und Ausbildung sind bei Curt Nicolin Gymnasiet Schüler und Arbeitslose. Die zweite Tabelle zeigt deutlich, dass Miguel Altunda eine breitere Zielgruppe hat, die z.B. Angestellte, Fach- und ungelernte Arbeiter, Manager, Unternehmer und Freiberufler umfasst.

Die Ausbildung im LAB des Curt Nicolin Gymnasiet ist auf die mechanische und elektronische Industrie ausgerichtet. Das Miguel Altuna Machining LAB zielt mit seiner Ausbildung auf die mechanische, elektronische, Automobil- und Luft- und Raumfahrtindustrie und das Robotik LAB auf die mechanische, elektronische und Automobilbranche.

Prozess:

Alle LABs von Curt Nicolin Gymansiet und Miguel Altuna haben eine physisch diskrete Produktion. Curt Nicolin Gymnasiet hat Werkbankfertigung und Werkstattfertigung als Fertigungsorganisation und die Produktion ist entweder manuell oder teilautomatisiert. Die beiden LABs von Miguel Altuna haben Werkstattfertigung als Fertigungsorganisation. Das Bearbeitungs-LAB ist entweder manuell oder teilautomatisiert und das Roboter-LAB ist voll automatisiert.

Einstellung:

Sowohl das LAB von Curt Nicolin Gymnasiet als auch das Roboter-LAB von Miguel Altuna sind physische LABs, die virtuell erweitert werden, z. B. über VR oder AR. Das machining LAB ist ebenfalls physisch, wird aber durch eine digitale Fabrik unterstützt. Die Befähiger der Veränderbarkeit im LAB von CNG sind Mobilität, Modularität und Skalierbarkeit. Miguel Altunas machining LAB hat Kompatibilität, Skalierbarkeit und Universalität und das Robotic LAB hat Mobilität und Modularität als ihre Changeability Enabler. Die Veränderbarkeitsdimensionen für das LAB von CNG und das Robotic LAB von Miguel Altuna sind Layout & Logistik und Technologie. Miguel Altunas Bearbeitungs-LAB hat Produktmerkmale und Produktdesign. Die am häufigsten genutzte IT-Integration in den LABs sind IT-vor-dem-Sop-Anwendungen wie CAD und CAM, aber auch IT-nach-dem-Sop und Produktion werden in Form von z. B. PPS, ERP und PLM genutzt.

Produkt:

Das LAB von CNG und das Bearbeitungs-LAB von Miguel Altuna haben physische Produkte und das Robotic LAB hat immaterielle Produkte, also Dienstleistungen. Keines der in den LABs hergestellten Produkte ist auf dem Markt erhältlich. Die Funktionalität der Produkte variiert im LAB von CNG, funktional, ohne Funktion und mit eingeschränkter Funktion. Die Produkte in den LABs von Miguel Altunas sind hingegen nicht funktionsfähig. Die weitere Verwendung der Produkte aus CNG's LAB sind zum Ausstellen, als Giveaway oder zum Verkauf. Die Produkte aus den beiden LABs von Miguel Altunas werden wiederverwendet oder ausgestellt.

Didaktik:

Alle LABs bilden alle in der Tabelle vorhandenen Kompetenzen aus, also fachliche, methodische, soziale, kommunikative, persönliche, handlungs- und umsetzungsorientierte Kompetenzen. Die Kompetenzen und Fertigkeiten werden vor allem durch Tutorien, Seminare, durch praktische LABs und Projekte vermittelt. Die Lernerfolgskontrolle in den LABs sind Wissenstest, schriftlicher Bericht, mündliche Präsentation, praktische Prüfung aber auch mündlicher Wissenstest.

Metriken:

Das LAB von CNG ist über 1000 Quadratmeter groß, nimmt jedes Jahr zwischen 200-500 Lernende auf und die Anzahl der Teilnehmer an jeder Schulung kann von 5 bis über 30 variieren. Die beiden LABs von Miguel Altunas sind zwischen 100 und 300 Quadratmeter groß, nehmen weniger als 50 Lernende pro Jahr auf und jede Schulung hat zwischen 15 und 30 Teilnehmer.

EXAM 4.0 affiliated partners' LABs

Machining Lab

Allgemeines Ziel/Zweck (kurze Zusammenfassung):

Die Bearbeitungswerkstatt mit fortschrittlichen Maschinen und Ressourcen wurde 2015 neu eingeweiht, um die folgenden Anforderungen zu erfüllen:

- 1. Unterrichten Sie die praktischen Fächer der VET-Programme der mechanischen Fertigung.
- 2. Angebot von Erstausbildungskursen und fortgeschrittenen Spezialisierungskursen für Arbeiter und Arbeitslose sowie von maßgeschneiderten Kursen für kleine und mittlere Unternehmen (KMU).
- 3. Angewandte Innovation, Prototyping, Forschung und Fertigungsdienstleistungen TKGUNE-Programm (http://y2u.be/AiRYtJe5NcE) für kleine und mittlere Unternehmen (KMUs) anbieten.

Jahr:

2015

Laborgröße (qm):

532

■ Allgemeine Informationen - Übersichtstabelle

	Name of the LAB			Machin	ing Lab					MAIN PURPOSE		
	VET/HVET centre			Bidaso	oa LHII					Education		х
GENERAL INFORMATION	Floor space of the lab (sqm)			532(71 cell1, 4	461 cell2-cell9)					Training		х
	Main topic/learning content	Cyber Physical infrasti Networking (Industria			chine Communicatio				Re	search/Applied innovation		х
	I4.0 related technologies			Machining on:	Conventional lathe	and milling machin	ning, CNC machi	ning, EDM, Gr	rinding, Weldi	ng	-	
	Learning content			Machine lea	rning such as CNC	machining, Addition	ve Manufacturin	g, conventiona	al lathe/milling			
PURPOSE	Secondary purpose			Production ma	anagement, Safety,	14.0 related topic	s, machining ser	vices for exte	rnal enterpris	es		
	LAB type		Specific			Mixed				Learning Factory		
		Nai	me of the programmes	carried out on the Lab		EQF Level	Lab hours	Nº subjects	on the lab	Hour/Week x n° of weeks	Nº stude	ents (3)
		Higher Technician	n in Production Sch	eduling in Mechanical	Manufacturing	5	198 252	2	2	6x33 12x21	2x2 3x2	
	Learning programmes/study		Technician ir	n machining		4	330 210 252	3	3	11x33 10x21 12x21	2x2 2x2	
LEARNING CONTENTS	programmes/levels	Higher ⁻	Technician in Manufa	acturing Design Mech	anics	5	198	1	ı	6x33	1x2	25
			-			-	-	-	-	-	-	-
			=			=	=		=	-	-	
			-			=	=	-	-	-	-	-
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell	17	Cell 8	Cell	19
	Category of cell	CNC lathes	CNC mills	Lathes	Mills	EDM	Grinding	Welc	ding	Tools warehouse	Materia	l store
	Nº machines	3	4	13	7	3	5	2	2	=	3	i
SETTINGS	I4.0 Enabler technologies used and	Robotics	Additive Manufacturing	Cloud	CPS	Mobile/Tablet	AR/VR	Big data a	analytics	Ai	loT/l	loT
	implementation level	Sensors/Actuators	RFID	M2M	Cybersecurity	Digital twin						

BETRIEBSMODELL

1.1	Betreiber	Akader	mische Institutio	on		Nicht-akademische Institution						tierter Betreiber	
1.1	betreiber	Universitäty	Hochschule	BA	Berufsschu	le/Gymnasium	Kammer	Gewerkschaft	Arbeitgeberv erband	Industrielles Netzwerk	Beratung	Produzierendes Unternehmen	
1.2	Trainer	Professor	Forscher		Studentische	Hilfkraft	Technsic	her Experte/Int.	Spezialist	Berater	Päc	lagoge	
1.3	Entwicklungen		Eigene Entwi	cklung			Extern geförder	te Entwicklung		E.	xterne Entwick	lung	
1.4	Anfangsfinanzierung		Interne M	ttel			Öfentlich	ne Mittel			Geschäftsmit	tel	
1.5	Laufende Finanzierung		Interne M	ttel			Öfentlich	ne Mittel			Geschäftsmit	tel	
1.6	Förderkontinuität	Kurzfris	stige Finanzierui Veranstaltui		nzelne	Mittelfristige	Förderungen (z. <3Ja		Programme		Langfristige Förderung (Prohejte und Programme > 3 Jahre)		
1.7	Geschäftsmodell für		Offe	ene Mode	lle	Geschlossene Modelle (Trainingsprogramme nur für Einzelunternehr					ohmon		
1.7	Schulungen	Club-M	Modelle		Kursgebühre	n	Gesci	nossene Moden	e (Hailingspro	gramme nur ru	i Linzerunterni	511111611	

Hinweis: In 1.7 Geschäftsmodelle für die Ausbildung gibt es verschiedene Modalitäten: Für Studenten im Erstausbildungsmodell sind die Programme staatlich finanziert. Für maßgeschneiderte Schulungen für Unternehmen ist es eine Kursgebühr. Wir verwenden auch geschlossene Modelle

Dieses Labor befindet sich innerhalb eines Berufsbildungszentrums, das institutionalisierte, absichtliche und geplante Lernprozesse vermittelt und dessen Ergebnisse akkreditiert sind.

Beschreibung der Finanzierungsmethoden

Da es sich bei Bidasoa um ein öffentliches Berufsbildungszentrum handelt, das dem Bildungsministerium des Baskenlandes untersteht, werden die Aktivitäten des Zentrums hauptsächlich von der Abteilung für Berufsbildung des Bildungsministeriums finanziert.

Bidasoa plant und überwacht sein eigenes Budget und entscheidet unabhängig über die Verwendung der Ressourcen.

- Bidasoa wird hauptsächlich von der Regierung finanziert. Es darf jedoch Einnahmen erzielen und einbehalten (z.B. durch den Verkauf von Trainingsdienstleistungen), um Investitionen, Forschung oder andere Aktivitäten zu finanzieren.
- Als öffentliche Einrichtung hat Bidasoa bis zu einem gewissen Grad die Befugnis, selbstständig Verträge mit anderen Organisationen wie Unternehmen, Bildungsanbietern und Spendern abzuschließen, um z. B. Dienstleistungen oder Ausrüstung zu kaufen oder zu verkaufen. Es gibt Beschränkungen in der maximalen Höhe der Verträge und auch in der Art der Verträge.
- Bidasoa hat jedoch nicht die Befugnis, Kredite aufzunehmen, um z. B. Investitionen zu finanzieren

ZWECK & ZIELSETZUNG

2.1	Hauptzweck		Ausbildu	ng					Berufsbildu	ng					Forschung			
2.2	Sekundärer Zweck		Testumgebung/Pilo	otumgebung	1		Industrie	produktion			Innovationstrans	sfer			Anzeige fü	r Produktie	on	
			Studi	erende					Ari	beitnehmer								
2.3	Ziepgruppen für Bildung und Training	Schüler	Bachelor	Master	Doktoran	Auszubildende	Enghlyraft		Ungelernte	Managers Unternehmer Freiberuffer Arbeitslos zugä							Öffentlich zugänglich	
			Bachelor	iviaster	den	Auszabilderide	raciikidit	Fachkraft	Fachkraft									
2.4	Gruppenkonstellation		Homoge	en						heterogen (Wisse	nsstand, Hierarch	ie, Studiere	nde + Mitarbeiter	etc.)				
2.5	Zielindustrien		Maschinen- und A	nlagenbau		Autor	nobil		Logis	tik		Transpor	t		FMCG		Luft- und	Raumfahrt
2.5	Zielindustrien		Chemische In	dustrie		Elektr	ronik		Konstru	ktion	Versio	:herungen/B	ankwesen		Textil			
2.6	Fachbezogener leminhalt		onsmanagement Organisation.	Ressourcen	neffizienz	Lean-Man	n-Management Automatisierung CPPS Abeitssystemgestaltung HMI Design Intralogistik, Design & Management											
2.7	Rolle des LAB für die Forschung					Forschungsobjekt Factor die onderzoek mogelijk maakt												
2.8	Forschungstehmen	Prod	uktionsmanagemen	& Organisa	tion	Re	ssourcenet	fizienz	Le	ean Management	Automatis	sierung	CPPS	Veränderb	parkeit	НМІ	Dida	aktik

Der Hauptzweck der Werkstatt ist der Unterricht von verschiedenen praktischen Kursen, die alle im Bereich der mechanischen Fertigung liegen. Durch das Erlernen und Üben des Umgangs mit den in dieser Werkstatt vorhandenen Maschinen erwerben die Schüler die technischen Fähigkeiten im Zusammenhang mit den verschiedenen in der Schule angebotenen Ausbildungsprogrammen. Dies ist jedoch nicht ihr einziger Zweck, denn es werden auch Kurse für Arbeiter und arbeitsloses Industriepersonal angeboten (Erstausbildung und Spezialisierungsprogramme). Darüber hinaus werden den Unternehmen im Rahmen eines Programms namens TKgune Dienstleistungen in den Bereichen Prototyping, Forschung und Fertigung angeboten.

Entsprechend dieser Ziele sind die häufigsten Aufgaben, die in der Werkstatt durchgeführt werden, die folgenden:

- Die Verfahren für die Bearbeitung von Teilen vorbereiten, wobei die Ressourcen, die notwendigen Zeiten und die Kontrollsysteme festgelegt werden.
- Ausführen und/oder Überwachen der Bearbeitungs-, Montage- und Wartungsprozesse unter Kontrolle der Zeiten und der Qualität der Ergebnisse.
- Ausführen und/oder Überwachen der Programmierung und Einstellung von Maschinen mit numerischer Steuerung für die Bearbeitung.
- Andererseits werden neue Aufgaben in der Werkstatt aufgenommen und/oder implementiert:
- Planen von Produktionsschulungen unter Verwendung von computergestützten Verwaltungstechniken und -werkzeugen.
- Bestimmen der notwendigen Bereitstellung von Material und Werkzeugen durch ein intelligentes Lager.
- Verwaltung und Durchführung der Wartung von Ressourcen und Maschinen.
- Diese Aufgaben stehen in vollem Zusammenhang mit dem Prozess der Einführung von Industrie 4.0, den die Schule durchführt. Mittelfristig gibt es zwei Hauptziele:
- -Schaffung eines fortschrittlichen Industrie 4.0-Labors, in dem die gesamte Verwaltung über ein Enterprise Resource Planning (ERP) erfolgt und alle Informationen in der Cloud gespeichert werden. Dieses System sollte den Einkauf, die Eingabe und den Bestand von Rohmaterial, Verbrauchsmaterialien und Ersatzteilen, den Produktionsprozess, das Smart Warehouse der Werkzeuge, die Maschinen, die vorbeugende und korrigierende Wartung sowie digitale Informationen für den Betrieb des Labors verwalten.
- -Entwickeln Sie eine auf Industrie 4.0 basierende Schulungsmethodik, bei der die Studenten Fähigkeiten im Zusammenhang mit Industrie 4.0 erwerben (siehe Kapitel 6).

Kurzfristig ist das Hauptziel die Implementierung und Einarbeitung aller Mitarbeiter in das in der Werkstatt vorhandene Smart-Warehouse sowie die Implementierung des Enterprise Resource Planning (ERP) im Tagesgeschäft der Werkstatt. Diese Aspekte werden in Abschnitt 2.5 detailliert beschrieben.

Was die Zielgruppen der Werkstatt betrifft, so wird sie hauptsächlich von Studenten aus 3 verschiedenen Studiengängen genutzt:

- Senior Technician in Produktionsplanung in der mechanischen Fertigung (EQF-Level 5),
- Senior Technician in der Fertigungskonstruktion Mechanik (EQF-Level 5)
- Techniker in der Zerspanungstechnik (EQF-Level 4)

Aber, wie bereits erwähnt, wird die Werkstatt neben den Erstausbildungsprogrammen auch genutzt für:

- Spezialisierungsprogramm
- Ausbildung f
 ür Beschäftigung
- Verbesserungs- und Recyclingprogramme
- Tkgune Angewandte Innovation und technische Dienstleistungen für KMU
- Maßgeschneidertes Training für KMUs (nicht sehr häufig)

Beschreibung der Beziehung zwischen jedem Studienprogramm und dem LAB

Jeder Studiengang verwendet je nach Zeitraum und Kurs unterschiedliche Zellen und Geräte. Jedoch folgen die Studenten sowohl in den EQF4- als auch in den EQF5-Programmen einer ähnlichen Entwicklung in ihren Studienprogrammen hinsichtlich der Nutzung der Werkstatt. Im ersten Kurs konzentrieren sich die Studenten auf die konventionelle Bearbeitung, während im zweiten Kurs der Schwerpunkt auf der CNC-Bearbeitung liegt. Im Gegensatz zu EQF5-Programmen beinhalten EQF4-Programme während des zweiten Kurses das Schleifen, die Funkenerosion (EDM) und die Schweißausbildung.

Heutzutage liegt sowohl bei EQF4- als auch bei EQF5-Programmen der Schwerpunkt des Lernens der Studenten auf der Vorbereitung und Herstellung von Teilen. Der Hauptunterschied zwischen den verschiedenen Programmen ist der Grad der Strenge und der Spezialisierung, die die Studenten erwerben. EQF5-Studenten sollen nicht nur technische Kompetenzen in der Bearbeitung erwerben, sondern auch Management- und Planungskompetenzen.

Das Ziel der Implementierung des ERP und des intelligenten Lagers ist es, den EQF5-Schülern zu ermöglichen, reale Management- und Planungsaufgaben durchzuführen, um ihre Kompetenzen auf diesem Gebiet zu entwickeln und die zuvor genannten neuen Aufgaben zu erlernen:

- Planen Sie die Produktion, indem Sie computergestützte Managementtechniken und -werkzeuge verwenden.
- Bestimmen Sie die notwendige Bereitstellung von Material und Werkzeugen durch ein intelligentes Lager.
- Verwaltung und Durchführung der Wartung von Ressourcen und Maschinen.

PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Service	Service	ce	Produktlebenszyklus
3.2	LAB Lebenszyklus	Investitionsplanung	Fabrikkonzept	Prozessplanung	Hochlauf	Fertigung	Montage	Service	Wartu	ıng	LAB Lebenszyklus
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequenzierung	Produktions termini		Fertigung	Montage	Service	Kommissior Verpack		Versand
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle l	Prüfung	Fertigung	Montage	Service	Wartu	ıng	Modernisierung
3.5	Indirekte Funktionen	SCM	Vertrieb	Eink	auf	HR	Finazen/C	ontrolling	QM		М
3.6	Materialfluss		Kontinuierliche Prod	duktion				diskrete	fertigung		
3.7	Prozesstyp	Massen	produktion	Serienpro	duktion		Kleinserienfe	rtigung		Kleir	nserienfertigung
3.8	Fertigungsorganisation	Ortsgebund	dene Fertigung	Werkbank	fertigung		Werkstattfer	tigung		Werkstattfertigung	
3.9	Automatisierungsgrad	Ma	anuell	Teilau	itomatisiert/hybr	ide Automatisierur	ng		Volla	utomatisc	h
3.10	Fertigungsmethoden	Schneiden	Trad. Primäre For	mgebung	Additive Fertigung	Additive Fertigur	ng Fügen	Beschic	htung	Änderung	Materialeigenschaften
3.11	Fertigungstechnologien	Physisch				Chemisch Biolog			ologisch		

Die Werkstatt ist auf verschiedene Zellen verteilt, in denen unterschiedliche Arbeits-/Produktionsprozesse zu finden sind, die jeweils für die Ziele der verschiedenen Kurse, die diese Zellen nutzen, optimiert sind. Jede Zelle hat ihren spezifischen Arbeitsablauf, ihre Anordnung und ihre Technologie. Es gibt jedoch einige Prozesse, die den meisten Zellen gemeinsam sind, wie z. B. das ERP, der Recycling-Prozess, das intelligente Lager usw.

Wie in Kapitel 2 beschrieben, stehen einige dieser gemeinsamen Prozesse und Aufgaben im Zusammenhang mit einer Übergangsstrategie hin zu einem modernisierten Werkstattkonzept 4.0, das in der Schule und speziell in dieser Werkstatt durchgeführt wird. Im nächsten Kapitel werden die verschiedenen Technologien und Geräte, die diesen Übergang ermöglichen, kurz beschrieben.

Spezifische Ausrüstung, die im LAB verwendet wird und sich mit Industrie 4.0 befasst

In den letzten Jahren wurden in der Werkstatt verschiedene Technologien und/oder Arbeitsmethoden eingesetzt, die auf die Digitalisierung der Werkstatt und die Modernisierung der Industrie 4.0 ausgerichtet sind. Einige davon wurden oder werden gemeinsam mit anderen Berufsbildungszentren in der Region umgesetzt.

- Im Fall von Bidasoa gibt es zwei Hauptlinien der Arbeit:
 - Digitalisierung der Verwaltung und Nutzung der Werkstatt. Zentralisierung der Informationen, die während der Arbeit in der Werkstatt verwendet werden, in der Cloud und Zugang zu diesen Informationen über einen digitalen Touchscreen. Die Hauptbereiche, in denen dieser Digitalisierungsprozess entwickelt wird, sind: digitale Verwaltung der Werkstattinstandhaltung, Zugriff auf die Odoo-Plattform, Zugriff auf Informationen für den Unterricht wie Pläne, Prozesse, Maschinenquadranten, etc.
- Implementierung eines ERP, genannt Odoo, für:
 - Verwendung von digitalen Bearbeitungsprozessblättern mittels taktiler Geräte (Tablets).
 - Datenanalyse: Maschinenbelegung, Bearbeitungszeiten.
 - Werkstattverwaltung: Maschinenreservierung, Kontrolle der Maschinenbelegung und der studentischen Arbeitszeiten, Material- und Werkzeuglagerverwaltung, Einkaufsverwaltung, Wartungsverwaltung usw.

Neben diesen beiden Arbeitsschwerpunkten wird seit einiger Zeit an der Umsetzung eines intelligenten Werkzeuglagers und der autonomen Versorgung von EPIS durch Studenten gearbeitet.

- Im Folgenden werden die Hauptmerkmale des Workshops in Bezug auf die genannten Arbeitsbereiche näher beschrieben.
 - Informationen, die in der Cloud zugänglich sind: Die Schule verfügt über ein digitales Verwaltungssystem auf Basis von Google Suite (Schulintranet). Es wird daran gearbeitet, alle im Workshop verwendeten Informationen/digitalen Werkzeuge in dieses System einzubinden. Die wichtigsten Elemente, die in dieser Plattform enthalten sind, sind:
 - Zugang zur Odoo-Plattform (ERP-System, siehe unten)
 - Informationen, die sowohl von den Lehrkräften als auch von den Schülern in der Werkstatt verwendet werden: Arbeitspläne, Blätter für den Bearbeitungsprozess, Verteilungstabellen zwischen Schülern und Maschinen, digitale Präsentationen und Videos, Dokumentation für die Überwachung der Lehrtätigkeit (z. B. Kontrolldokumente für die Anwesenheit oder Vorfallsberichte) usw.
 - Zugriff auf Tools, die von Lehrkräften und/oder Studenten während der Vorlesungen verwendet werden: Zugriff auf die Moodle-Plattform, Videokonferenz-Tools, CAD-CAM-Tools, etc.
 - Der Zugang zu diesem Managementsystem und zu allen genannten Elementen und Tools erfolgt über ein zentrales Touch-Gerät, in das ein Fingerabdruck-Zugangsgerät integriert ist, um einen schnellen und sicheren Zugang für das in der Werkstatt arbeitende Personal zu gewährleisten.

Abbildung 1: Intranet-Plattform der Schule, auf der alle Verwaltungs- und Informationsaufgaben zentralisiert sind

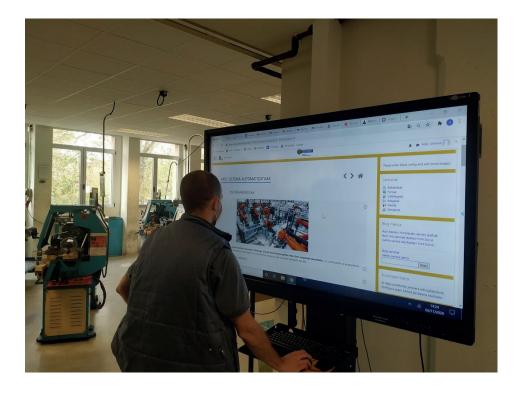


Abbildung 2: zentraler Touchscreen der Werkstatt

- Odoo ERP: Odoo ist ein Open-Source-Ressourcenplanungssystem (ERP), das in der Zentrale entwickelt, angepasst und implementiert wird. Durch dieses ERP sollen die folgenden Aspekte abgedeckt werden:
 - Verwaltung der Computerwartung.
 - Verwaltung der korrigierenden/vorbeugenden Wartung in der Werkstatt.
- Planung und Verwaltung der Maschinennutzung: Reservierungen, Belegungskontrolle, Planung der Studenten-/Maschinennutzung, Zuweisung von spezifischen Arbeitsaufträgen an bestimmte Studenten/Maschinen, etc.
- Erstellung von digitalen Arbeitsblättern auf der Plattform. Ziel ist es, dass die Studenten das digitale Prozessblatt auf der Plattform erstellen und dann an der Maschine mittels eines Touch-Gerätes, das jede Maschine hat (in diesem Fall Tablets), benutzen. Auf diese Weise wird die Verwendung von Papier eliminiert, da jeder Schüler über das digitale Gerät auf alle benötigten Informationen zugreifen kann (digitales Prozessblatt, Arbeitsplan, technische Informationen usw.).
- Kontrolle der Entwicklung der Arbeit der Schüler und Kontrolle des Einsatzes der Maschinen: Die Lehrer können den Zustand der Werkstatt und die Arbeit der Schüler dank des im vorherigen Absatz beschriebenen Systems überwachen. Diese Überwachung kann von jedem beliebigen Computergerät aus durchgeführt werden. Darüber hinaus ist, wie in Kapitel 2 erwähnt, eines der Ziele der Implementierung dieses ERP, dass die Studenten der EQF5-Level-Programme die Arbeit in der Werkstatt verwalten und planen können, und die Plattform ermöglicht diese Überwachung auch durch die Studenten.

Abbildung 3: Lehrer, der ein in der Odoo-Plattform (ERP) erstelltes digitales Prozessblatt im digitalen Touchgerät einer Abstimmmaschine verwendet.

- Big Data-Analyse: Der Einsatz des ERP ermöglicht die Erfassung einer großen Menge an Daten: Nutzungsgrad der Maschinen, benötigte Stunden jedes Schülers in jeder Operation/jedem Teil, Nutzungsstunden von Elementen/Werkzeugen, usw. Das mittelfristige Ziel ist es, alle diese Daten analysieren zu können, um nützliche Informationen für die Entscheidungsfindung in Bezug auf Lehr-/Lernprozesse, Werkstattmanagement, Zeitplanmanagement, Wartung usw. zu erhalten.
- Verkaufsautomat: Ab diesem Kurs verfügt die Werkstatt über einen Werkzeug- und PSA-Automaten für Studenten. Zusätzlich zu den Vorteilen auf organisatorischer Ebene bietet der Automat die Möglichkeit, Daten über PSA und Werkzeuge zu erfassen. So sollen Aspekte wie der Nutzungsgrad und die Ausgaben des EPIS, die Gesamtausgaben für Werkzeuge und nach Typ sowie andere Möglichkeiten, die sich ergeben können, analysiert werden, um entsprechend Verbesserungsmaßnahmen zu ergreifen.
- Zusätzlich zu den genannten digitalen Geräten verfügt die Werkstatt über eine mobile Box mit 14 Laptops, mit denen die Schüler in der Werkstatt neben den Maschinen arbeiten können. Um dies zu ermöglichen, wurde die Werkstatt mit einer drahtlosen Internetverbindung ausgestattet.
- Intelligentes Lager: Die Werkstatt verfügt über ein intelligentes Lager, das gerade eingerichtet wird. Mittels RFID UHF wird der Zutritt von Personen zusammen mit den Werkzeugen, die sie herausnehmen, gesteuert. Die Werkzeuge sind im Lager angeordnet und jedes Element hat eine identifizierende RFID, so dass, wenn eine Person das Lager betritt, um ein Werkzeug zu holen oder zu verlassen und es dann wieder verlässt, dies erfasst wird. Dies ermöglicht die Kontrolle der Werkzeugnutzung und könnte in Zukunft die Automatisierung der Werkzeugwartung, des Nachschubs usw. ermöglichen. Es wird die Möglichkeit der Integration des intelligenten Lagers mit dem Odoo ERP analysiert, was auch die Automatisierung des Einkaufs von Ersatzteilen und damit die Analyse der Haltbarkeit und der Werkzeugnutzung usw. ermöglichen würde.

SETTING

4.1	Lernumgebung	Rein physikalisch (Planung + Ausführung)	digitale F	unterstützt durch abrik (siehe "IT- egration")	Physisch, virt	tuell erweitert	Rein virtuell (Planung + Ausführung)
4.2	Umgebungsskala	Ve	erkleinert			Lebens	sgroß
4.3	Arbeitssystemebene	Arbeitsort	Arbe	eitssystem	W	erk	Netzwerk
4.4	Enablers für Verädnerbarkeit	Mobilität	Modularität	Kompatibi	lität	Skalierbarkeit	Universalität
4.5	Veränderbarkeitsdimen sionen	Layout & Logistik	Produktmerk Produktde		sign	Technologie	Produktmengen
4.6	IT-Integration	IT vor SOP (CAD, CAM, S	mulation)	IT nach SOP (PPS	ERP, MES) IT nach Pr		oduktion (CRM, PLM)

Zu welchem Zweck werden verschiedene IT-Integrationen eingesetzt:

Die Werkstatt verfügt über verschiedene IT-Systeme, wie CAD- und CAM-Software, Simulatoren oder die ERP-Plattform. Wie in Kapitel 3 erläutert, ermöglicht die Ausrüstung, die diese Systeme unterstützt (Laptops, digitale Geräte, drahtloses Netzwerk usw.), die Integration dieser IT-Systeme in den Arbeitsalltag der Werkstatt.

Der Zweck dieser IT-Systeme ist es, eine reale und effizientere digitale Umgebung zu schaffen, in der die Schüler lernen und sich so bewegen können, wie sie es in ihren zukünftigen Jobs tun müssen. Dies erleichtert den Erwerb der digitalen Kompetenzen, die die Schüler benötigen, wie z. B. die Nutzung verschiedener digitaler Geräte und Umgebungen, verschiedener Kommunikationsprotokolle und anderer Funktionen in Bezug auf Industrie 4.0.

Allgemeine Einstellung der Geräte:

Die Werkstatt hat 532 m2. Sie ist in zwei Bereiche unterteilt. Im Hauptbereich von 462 m2 befinden sich die meisten Maschinen, zum einen alle konventionellen Bearbeitungen, zum anderen zwei CNC-Fräsmaschinen und zwei CNC-Bearbeitungszentren. In der gleichen Werkstatt befinden sich fünf Schleifmaschinen und eine didaktische Fräsmaschine.

Außerdem gibt es einen Montagebereich, eine automatische Gewindeschneidmaschine, drei Bohrmaschinen, 3 Sägen und zwei Schweißkabinette.

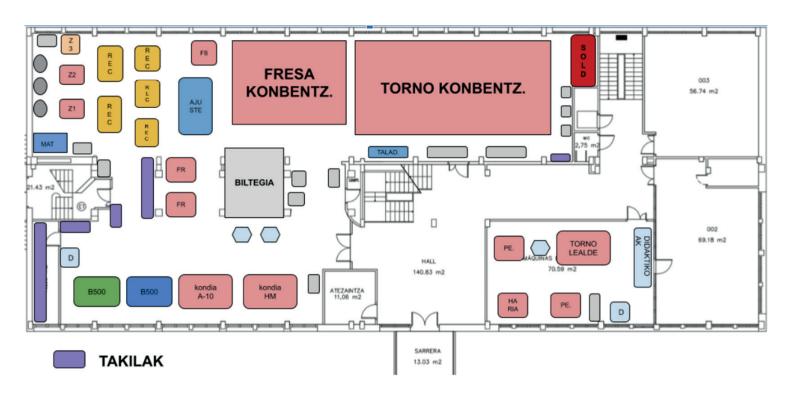


Abbildung 5: Werkstattübersicht

Der zweite Bereich verfügt über eine CNC-Drehmaschine, zwei Senkerodiermaschinen und eine Drahterodiermaschine.

Die verfügbare CNC-Ausstattung ist wie folgt:

- 2 KONDIA B500 FAGOR CNC milling machines
- 1 KONDIA HM 1060 FAGOR CNC-Fräsmaschine
- 1 KONDIA A10 HEIDENHAIN CNC-Fräsmaschine
- 2 KONDIA Powermill CNC-Fräsmaschinen
- 1 CNC-Didaktik-Fräsmaschine ALECOP 8010
- 1 CNC-Drehmaschine LEALDE TCN10
- 3 CNC-Drehmaschinen ALECOP 8020

Abbildung 6: CNC LEALDE TCN10 Lathe

Abbildung 7: CNC Fräszelle

Folgende Maschinen sind in der konventionellen Werkstatt vorhanden:

- 9 Pinacho-Drehbänke S-90/180
- 4 Pinacho 10 Drehbänke SP/165
- 6 LAGUN FTV 4-SP Fräsmaschinen
- 3 LETAG EE-3 Schmirgel
- 1 SAMUR S-400 Säge
- STARRET ST3410 Säge
- STARRET ST3602 Säge
- 1 BELFLEX BF-20-TS Bohrmaschine
- 2 Bohrungen QUANTUM B30 GT
- ERLO Säulenbohrmaschine TSA 25/30 Serie
- GAMOR GN 16 Gewindeschneidmaschine
- OERLIKON Citotig 2200 Schweißgerät
- LINCOLN ELECTRIC Schweißgerät Invertec V205-T

Der EDM Bereich beinhalten folgende Mschinen:

- ONA PRIMA E250 Drahterodieren
- ONA D-2030 Senkerodiermaschine
- ONA COMPACT2 Durchdringungs-Erodiermaschine

Zusätzlich zu dem beschriebenen Maschinenpark verfügt die Werkstatt über zwei Lager, eines für Rohmaterial und eines für Werkzeuge, und jeder der Bereiche hat mehrere Tische und Stühle.

Schließlich werden beide Bereiche durch das Labor für additive Fertigung unterstützt, das in diesem Bericht nicht im Detail beschrieben wird, aber einen engen Bezug zu den durchgeführten Aufgaben und einigen der im Labor erworbenen Fähigkeiten hat.

Dieses Labor verfügt über verschiedene Geräte zur additiven Fertigung wie z. B.:

- Ultimaker S2 3D Drucker
- Ultimaker S5 3D Drucker
- Creality CR-10 3D Drucker
- Stereolithographie-Maschine

PRODUKT

5.1	Material		Materie	II (physisches	produkt		ı	mmateriell (Se	rvice)	
5.2	Produktform		Stück	gut		Schütt	igut	Strömu	ngsrodukte	
5.3	Produktherkunft	E	igene Entwicklun	g	Entwic	klung durch Teiln	ehmer	Externe	Entwicklung	
5.4	Marktfähigkeit des Produktes	Auf	dem Markt verfüç	gbar	Am Markt ve	rfügbar, aber nich vereinfacht	t didaktisch	Nicht auf dme Markt verfügbar		
5.5	Produktfunktionalitä t	Funl	ktionsfähiges Pro	dukt		n angepasstes Pr chränkter Funktio			on / Anwendung Deonstration	
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon entwice		Annahme	von Aufträgen	
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nac	h teilnehmer	Bestimmt	durch Aufträge	
5.8	Anzahl der Komponenten	L 6-20 Komponenten L 51-100 Komponenten L					> 100 Komponenten			
5.9	Weitere Verwendungen des Produktes	Wiederverwendung/- verwertung Ausstellung Werbegeschen k Verkauf Entsorg					Entsorgung			

Weitere Beschreibung der im LAB hergestellten Produkte

Dieses Labor kann nicht als Lernfabrik betrachtet werden, da es nicht auf die Produktion und/oder Montage eines Produkts oder einer Produktfamilie ausgerichtet ist. Die Produkte, die im Labor bearbeitet werden, haben in der Regel eine begrenzte oder keine Funktionalität, und ihr Ziel ist es, bestimmte spezifische Fähigkeiten zu erwerben, während sie bearbeitet werden.

Diese Art von Produkten werden Trainingsteile genannt, aber es gibt zwei Hauptarten von Lernaktivitäten: die Trainingsteile, die darauf abzielen, die erwähnten Grundfertigkeiten zu erwerben, und das "Challenge based collaborative learning". Bei den Herausforderungen handelt es sich in den meisten Fällen um den Entwurf, die Herstellung und den Zusammenbau von Produkten, die ein bestimmtes, den Schülern vorgelegtes Problem lösen. Das Hauptziel bei der Anwendung dieser zweiten Methodik ist es, reale Arbeitssituationen zu reproduzieren, in denen die Schüler in Zukunft zurechtkommen müssen. In diesem Fall hat das Endergebnis/Produkt einen bestimmten Grad an Funktionalität, aber sie sind unterschiedlich, sogar zwischen verschiedenen Gruppen von Studenten.

Schließlich, da dieses Labor technologische Innovationsdienstleistungen anbietet und Aufträge von Unternehmen angenommen werden, werden reale Prototypen, Teile oder Baugruppen mit echter voller oder teilweiser Funktionalität hergestellt.

Abschließend müssen die Informationen der Tabelle im einzigartigen Kontext dieses Labors gefiltert und interpretiert werden.

6.1	Kompetenzklassen	Fach- und Methodenkompetenzen		Soziale & kommunikative Kompetenzen		Persönlichkeitskompetenzen		Handlungs- und umsetzungsorientierte Kompetennzen			
6.2	Dimensionen Lernziele	Kogr	nitiv		Affektiv		Psycho-motorisch				
6.3	Lernszenariostrategien	Anweisung		Vorführung		Geschlossenes Szenario		Offenes Szenario			
6.4	Art der lernumgebung	Greenfield (Entwicklung der Fabrikumgebung)				Brownfield (Verbesserung der bestehenden Fabrikumgebung)					
6.5	Kommunikationskanal	Lemen vor Ort (in Fabrikumgebung)				Fernverbindung (zur Werksumgebung)					
6.6	Grad an Autonomie	Beauftragt Selbstgesteuert.			bstgesteuert/-re	reguliert Selbstbestimmt/-organisiert					
6.7	Rolle des Trainers	Präsentator	Modera	ator		Coach		Ausbilder			
6.8	Art der Ausbildung	Lernprogramm	Praktischer L	aborkurs Se		ninar Workshop		Projektarbeit			
6.9	Standardisierung von Schulungen	Standardisierte Schulungen					Individuelle Schulungen				
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus (Voraus (en bloc)		Im Wechsel mit praktischen teilen		Bedarfsorientiert		Danach	
6.11	Auswertungsstufen	Feedback der teilnehmer	Lernen der Te	Inehmer Transfer ir		n reale Fahrik I		he Auswirkung chulung		ainings / ROI	
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstest	(mündlich)	Schriftlicher Bericht	Mündlcihe Präsentation Praktische Prüfung		Keine			

Spezifische Kompetenzen, die im Labor und Curriculum vermittelt werden:

Dieses Labor wird von den in Abschnitt 2 genannten Programmen genutzt: Senior Technician in Production Scheduling in Mechanical Manufacturing (EQF Level 5), Senior Technician in Manufacturing Design Mechanics (EQF Level 5) und Technician in Machining (EQF Level 4).

Das Programm Zerspanungstechniker nutzt das Labor für 3 verschiedene Module. Fertigung durch Zerspanung (363h) im ersten Jahr und CNC (252h) und Fertigung durch Abrasion, Erodieren, Schneiden und Umformen, additive Fertigung und durch spezielle Prozesse (210h) im 2. Jahr.

Das Programm des Höheren Technikers in der Programmierung der Produktion in der mechanischen Fertigung nutzt das Labor auch für 3 verschiedene Module. Im 1. Jahr Mechanische Fertigungstechniken (198h) und im 2. Jahr CNC (240h) und CAM (40h).

Der Studiengang Höherer Techniker für Konstruktion in der mechanischen Fertigung schließlich nutzt das Labor nur für das Modul Mechanische Fertigungstechniken (198h) im ersten Jahr des Studiengangs.

Zusätzlich zu den technischen Kenntnissen und Fähigkeiten, die in den verschiedenen Modulen erworben werden, entwickeln die Studierenden übergreifende Kompetenzen und I4.0-bezogene Kompetenzen. Gemäß den Anforderungen der Unternehmen sind diese übergreifenden Kompetenzen im Arbeitsalltag ebenso wichtig wie die technischen. Dies sind einige dieser I4.0-bezogenen Kompetenzen, unter anderem:

- Durchführung von Simulationen: CAM in Maschinen integriert, Einsatz von Computer- und Maschinensimulatoren, etc.
- Kenntnisse über Datenerfassungssysteme: Mit Hilfe des ERP werden Informationen gesammelt und für die anschließende Analyse (Maschineneinsatz, Bearbeitungszeiten, Werkzeugstandzeit, Materialbestand usw.) und Entscheidungsfindung aufbereitet.
- Einarbeitung in die integrierten Radiofrequenz-Identifikationssysteme.
- Nutzung verschiedener digitaler Werkzeuge/Geräte für den Zugriff auf die ERP-Management-Plattform und die in der Cloud verfügbaren Informationen: Computer, Tablets, Touchscreen, Maschinenschnittstellen, etc.
- Organisieren von digitalen Informationen, Dokumentationen und Dateien: Die Cloud, CAD-CAM-Dateien, ERP, etc.
- Kenntnisse über Netzwerksysteme und Arbeitsmethodik. Nutzung der Cloud.
- Korrektur von Abweichungen der bearbeiteten Teile (Maß-, Geometrie- und Oberflächentoleranzen) in Echtzeit durch den Einsatz digitaler Messwerkzeuge und -systeme und Verwaltung der gewonnenen Daten.

Der Einsatz des ERP, der in den vorangegangenen Kapiteln erläutert wurde, bringt wichtige Änderungen im Vergleich zur traditionellen Arbeits- und Lehrmethodik in der Schule mit sich: die Erstellung digitaler Prozessblätter durch die Studenten (die Studenten erstellen diese Blätter im theoretischen Unterricht, bevor sie die Teile in der Werkstatt herstellen, und können vor Ort über digitale Geräte darauf zugreifen), die einfache Verfolgung des Zustands jedes Studenten/jeder Maschine während der Vorlesung, die Analyse der Maschinenbelegung, die Analyse der Werkzeugstandzeit, die Berechnung der Arbeitszeiten, die Automatisierung der Materialbestellung, die Automatisierung der Werkzeugbestellung usw. Das ERP zielt also nicht darauf ab, ein einfaches Werkzeug für das theoretische Fach zu sein, in dem Fertigungsprozessblätter erstellt werden. Dieses Werkzeug kann dem Höherstufenzyklus der Produktionsprogrammierung zu einem Qualitätssprung in der Ausbildung der Studenten verhelfen, indem es ihnen ermöglicht, alle Aspekte des Produktionsprozesses zu berücksichtigen, auf diese einzuwirken und Wissen und reale Praxis in der Produktionsprogrammierung und nicht nur in der mechanischen Fertigung von Teilen zu erwerben. Abschließend zielt es darauf ab, dass die Studenten zu Protagonisten ihres Lernprozesses werden, was ihnen erlaubt, ihren Arbeitsprozess in seiner Gesamtheit zu beobachten.

Lernmethode

Die zentrale Methodik, auf der das gesamte Lernmodell aufbaut, heißt COLLABORATIVE LEARNING BASED ON CHALLENGES, ein Modell, das von Tknika, dem baskischen Forschungszentrum für Berufsausbildung, entwickelt wurde.

Die Hauptidee dieser Methodik ist es, Herausforderungen zu schaffen, die nahe an der Realität sind, mit der die Schüler in ihrer zukünftigen beruflichen Tätigkeit konfrontiert sein werden.

Daher werden die traditionellen Vorlesungen und Schulstrukturen nicht mehr als Hauptlehrmethode verwendet. Stattdessen arbeiten die Studenten in Teams und stellen sich problematischen Herausforderungen, die sie lösen müssen. Dazu müssen sie das benötigte Wissen und die Fähigkeiten identifizieren und sich diese mit Hilfe von Lehrern und durch spezifische Schulungen, aber auch selbst aneignen. Die Lehrer übernehmen die Rolle des Anleiters, aber die Verantwortung für die Lösung der herausfordernden Situation liegt bei den Schülern. Auf diese Weise werden die SchülerInnen für ihren Lernprozess verantwortlich und entwickeln übergreifende Kompetenzen wie autonomes Lernen, Teamarbeit, Eigeninitiative, digitale Kompetenzen usw.

Heutzutage ist der Grad der Umsetzung dieses neuen methodischen Modells in jedem Studiengang unterschiedlich. Daher koexistiert das traditionelle Lehr-Lern-Modell immer noch mit dem neuen kollaborativen Lernen, das auf der Methode der Herausforderungen basiert.

Bei dieser Methode müssen traditionelle Fächer, Stundenpläne und Meisterklassen verschwinden. Infolgedessen ist eine höhere Flexibilität bei Räumen, Laboren und Stundenplänen der Lehrer erforderlich. Die Einbeziehung der verschiedenen I4.0-bezogenen Tools und Technologien, die zuvor erwähnt wurden, kann diese methodologische Veränderung erleichtern.

METRIK

7.1	Anzahl an Teilnehmern pro Schulung	1-5 Teilnehmer	5-10 Teilnehmer	10-15 Teilnehmer	15-30 Teilnehmer	30> Teilnehmer	
7.2	Anzahl an standardisierten Schulungen	1 Training	2-4 Trainings	5-10 Trainings		> 10 Trainings	
7.3	Durchschnittliche Dauer einer Schulung	≤1 Tag	> 1 Tage bis ≤ 2 Tage	> 2 Tage bis ≤ 5 Tage	> 5 days bis ≤ 10 Tage	> 10 Tage bis ≤ 20 Tage	> 20 Tage
7.4	Teilnehmer pro Jahr	< 50 Teilnehmer	50-200 Teilnehmer	201-500 Teilnehmer	501-1000 Teilnehmer	> 1000 Teilnehmer	
7.5	Kapazitätsauslastung	< 10%	> 10 bis ≤ 20%	> 20%bis ≤ 50%	> 50% bis ≤ 75%	> 759	%
7.6	LABgröße	≤ 100 qm	> 100 qm bis ≤ 300 qm	> 300qm bis ≤ 500qm	>500 qm bis ≤ 1000 qm	> 1000 qm	
7.7	FTE im LAB	<1	2-4	5-9	10-15	> 15	5

Dies ist ein Labor, in dem 3 verschiedene Gruppen von Studenten arbeiten können, die jeweils zwischen 20 und 25 Mitglieder haben.

WEITERE INFORMATIONEN UND ASPEKTE ZUR VERBESSERUNG

8.1	Weitere Informationen	Bilder	Video	
8.2	Aspekt zur Verbesserung	Technisch	Methodologisch	

Aspekte zur Verbesserung

Einer der Schlüsselfaktoren bei der Entwicklung des Labors ist der menschliche Faktor, sowohl bei der Entwicklung des methodischen Modells als auch bei der Umsetzung der verschiedenen zuvor beschriebenen I4.0-Arbeitslinien. Aus diesem Grund wird die Schulung der Mitarbeiter als sehr wichtig erachtet, um ihre allgemeinen digitalen Kompetenzen zu verbessern, vor allem jene, die mit den im Labor implementierten strategischen Arbeitslinien zusammenhängen.

Die Implementierung von Technologien und Funktionen im Zusammenhang mit Industrie 4.0 ist ein laufender Prozess. Kurz- und mittelfristig sind viele neue Implementierungen und Investitionen vorgesehen

- Vollständige Implementierung des intelligenten Lagers.
- Vollständige Implementierung des ERP.
- Integration des Instandhaltungsmanagementsystems in das ERP.
- Integration des Werkzeug- und Rohmateriallagers in das ERP und Automatisierung des Einkaufssystems von beiden.
- Ausweitung der Nutzung von digitalen Prozessblättern auf alle Studiengänge und Studentengruppen.
- Entwicklung der Nutzung von gewonnenen Big Data und deren Behandlung durch das ERP.
- Metrologie in Linienprozessen.
- Einbindung aller CNC-Maschinen in das Netzwerk.

Stärken und Schwächen des LAB. Gelernte Lektionen

Eine der Hauptschwächen in Bezug auf die I4.0-Implementierungsphase ist die Anfangsphase, in der sich die meisten Arbeitslinien befinden.

Zweitens ist der Platzmangel im Labor ein großes Problem. Das neue lernmethodische Modell erfordert ein hohes Maß an Flexibilität und schafft komplexe organisatorische und zeitliche Planungsanforderungen. Um dieses große Problem zu lösen, ist es notwendig, den verfügbaren Raum im Labor zu überdenken.

Drittens ist die Beschäftigung der Lehrer mit den verschiedenen Prozessen und Technologien, die im Labor implementiert werden, ein weiterer wichtiger Punkt, der berücksichtigt werden muss. Wir müssen immer noch einen Teil des Teams von den Vorteilen und der Notwendigkeit, diese Veränderungen durchzuführen, überzeugen.

TKGUNE Machining Lab

Allgemeiner Zweck/Zielsetzung (kurze Zusammenfassung):

Die TKGUNE-Bearbeitungswerkstatt, mit fortschrittlichen Maschinen und Ressourcen, wurde 2016 gegründet, um die folgenden Bedürfnisse zu erfüllen:

- 1.- Angewandte Innovationsdienstleistungen (TKGUNE) für kleine und mittlere Unternehmen (KMU) bereitstellen.
- 2.- Lehren Sie Spezialisierungen für Berufsausbildungsstudenten.
- 3.- Bieten Sie fortgeschrittene Bearbeitungskurse in verschiedenen CNC-Steuerungen und Maschinen für Arbeiter und Arbeitslose im Bereich Employment Training an.
- 4.- Bieten Sie maßgeschneiderte Kurse für kleine und mittlere Unternehmen (KMUs) an.

Jahr:

2016

Laborgröße (qm):

600

■ Allgemeine Informationen - Übersichtstabelle

	Name of the LAB			TKGUNE Machini	ng Lab				MAIN PURPOSI	E	
	VET/HVET centre			CIFP IMH LH	III				Education		х
GENERAL INFORMATION	Floor space of the lab (sqm)			600					Training		х
	Main topic/learning content	Machin	ing on CNC multitasking and 5	i-axis machining centro	es, precision grindir	ng, wire EDM and	l metrology		Research/Applied innovation	on	х
	l4.0 related technologies			Data	a acquisition and an	alysis, IloT, Cyber	security, Rob	otics			
	Learning content		CNC Machining:	Multitasking, 5-axis m Mechatr	nachining centres, 3 onics: Assembly an				M and metrology.		
PURPOSE	Secondary purpose			Production r	management, Smar	t maintenance an	d I4.0 related	technologies.			
	LAB type		Specific			Mixed			Learning Facto	ory	
			Name of the programmes carri	ed out on the Lab		EQF Level	Lab hours	N° subjects on the lab	Hour/Week x n° of weeks	Nº stude	ints (3)
		Pro	duction Management and Me	chanical Manufacturin	g	5	168	=	8x21	10>	d
LEARNING CONTENTS	Learning programmes/study programmes/levels		Industrial Mechat	ronics		5	198	=	6x33	10>	d
	programmes/revels		=			_	_	-	_	_	
						_	-	-	_	_	
						_	-	_	_	_	
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell	9
	Category of cell	CNC Controls & Simulation mock-ups	Multitasking machines, Machining centres, High precision grinding machine 6 Submerged wire EDM	Flexible and intelligent modular manufacturing system	=	=	-	-	-	-	
SETTINGS	Nº machines	3	5	1	=	=	=	-	-	_	
	14.0 Enabler technologies used and	Robotics	Additive Manufacturing	Cloud	CPS	Mobile/Tablet	AR/VR	Big data analytics	Ai	loT/l	loT
	implementation level	Sensors/Actuators	RFID	M2M	Cybersecurity	Digital twin				actory	

BETRIEBSMODELL

44	Betreiber	Akade	mische Instituti	on	Nicht-akademische Institution Gewir							Gewinnorien	tierter Betreiber
1.1	Betreider	Universitäty	Hochschule	ВА	Berufssch	ule/Gymnasiur	n	Kammer	Gewerkschaft	Arbeitgeberv erband	Industrielles Netzwerk	Beratung	Produzierendes Unternehmen
1.2	Trainer	Professor	Forscher		Studentische	e Hilfkraft		Technsic	ammer Gewerkschaft Arbeitgeberv Industrielles Netzwerk Berat Technsicher Experte/Int. Spezialist Berater geförderte Entwicklung Externe E Öfentliche Mittel Geschä	Päo	lagoge		
1.3	Entwicklungen		Eigene Entw	icklung			Ex	ctern geförderte	e Entwicklung		E:	xterne Entwick	dung
1.4	Anfangsfinanzierung		Interne M	littel	Öfentliche Mittel Öfentliche Mittel Geschä Öfentliche Mittel Geschä B.: einzelne Mittelfristige Förderungen (z.B. Projekte und Programme Langfristige Förderungen (z.B. Projekte und Programme)	Geschäftsmit	tel						
1.5	Laufende Finanzierung		Interne M	littel					Geschäftsmittel				
1.6	Förderkontinuität	Kurzfri	stige Finanzieru Veranstaltu		nzelne	Mittelfristi	ige Fö			rogramme		ge Förderung (ogramme > 3	
4.7	Geschäftsmodell für	Offene Modelle	-										
1.7	Schulungen	Club-M	1odelle		Kursgebühre	n		Geschi	ossene Modelle	(irainingsprogi	ramme nur tur i	Eirizeiunterner	imen

Hinweis: In 1.7 Geschäftsmodelle für die Ausbildung gibt es verschiedene Modalitäten: Für Studenten im Erstausbildungsmodell sind die Programme staatlich finanziert. Für maßgeschneiderte Schulungen für Unternehmen ist es eine Kursgebühr. Wir verwenden auch geschlossene Modelle.

ZWECK & ZIELSETZUNG

2.1	Hauptzweck		Ausbil	ldung					Berufst	bildung					onderzo	ek		
2.2	Sekundärer Zweck		Testumgebung/l	Pilotumgeb	ung		Indust	trieproduktio	on		Innova	ationstransfer			Anzeige für F	Produktion		
			\$	Studierende					Ar	beitnehme	er							
2.3	Ziepgruppen für Bildung und Training	Schüler				Auszubildende	5 II 0	Ausge	ebildete U	Ingelernte		Managers		Unternehmer	Freiberufle	Arbeitsle		ntlich nglich
			Bachelor	Master	Doktoranden	Auszubilderide Fachkraft Fachkraft Fachkraft			Unteres Management	Mittleres Management	Top- Management							
2.4	Gruppenkonstellation		homo	geen		heterogen (Wissensstand, Herarchie, Studi						ende + Mitarbe	iter, etc.)					
			Maschinen- un	nd Anlagenb	au	Automobil Logis			stik	Т	ansport		FMCG	Lu	t- und Raum	nfahrt		
2.5	Zielindustrien		Chemische	e Industrie		E	ektronik			Konstru	ıktion	Versicheru	ngen/Bankwes	sen Textil		extil		
2.6	Fachbezogener lerninhalt		management inisation.	Lean-l	Managemen	ıt	Automa	tisierung	CPPS	Abeitssystemgesta Itung HMI				alogistik, Des Managemen	ogistik, Design &			
2.7	Rolle des LAB für die Forschung					Forschungsobjekt			•		F	actor die onderz	oek mogelijk r	naakt	<u> </u>			
2.8	Forschungstehmen	Produktionsmanagement & Organisation				Ressourceneffizienz Lean		Lean Management Automatisierung C		rung CPP	S Verände	erbarkeit	НМІ	Didaktik				

Die TKGUNE-Bearbeitungswerkstatt, mit fortschrittlichen Maschinen und Ressourcen, wurde 2016 gegründet, um die folgenden Bedürfnisse zu erfüllen:

- 1.- Angewandte Innovationsdienstleistungen (TKGUNE) für kleine und mittlere Unternehmen (KMU) bei komplexen Bearbeitungsprozessen an Multitasking-Maschinen sowie an Drehbänken und mehrachsigen Bearbeitungszentren anzubieten.
- 2.- Spezialisierungen für Berufsschüler vermitteln, die nach 2 Jahren Studium und Berufstätigkeit im Dualen Modell ein drittes Jahr ebenfalls im Dualen Modus absolvieren können, in dem sie eine hohe Qualifikation erwerben, um auf die Bedürfnisse der Unternehmen eingehen und komplexe Produktionsprozesse planen und durchführen zu können. Zwei Spezialisierungsprogramme können am IMH durchgeführt werden:

- Advanced Machining of Special Materials in High Speed und High Performance. Es wird nach dem Studium des höheren Studiengangs Produktionsprogrammierung in der mechanischen Fertigung durchgeführt.
- Durchführung von Projekten des fortgeschrittenen Werkzeugmaschinenbaus. Es wird nach dem Studium des höheren Grades Zyklus der industriellen Mechatronik durchgeführt.
- 3.- Angebot von fortgeschrittenen Bearbeitungskursen in verschiedenen CNC-Steuerungen und Maschinen für Arbeiter und Arbeitslose im Bereich Employment Training.
- 4.- Angebot von maßgeschneiderten Kursen für kleine und mittlere Unternehmen (KMU).

In der Folge hat die Direktion der IMH im Jahr 2018 als strategisches Ziel die "Digitalisierung der Werkstätten der IMH" festgelegt. Ziel ist es, eine Werkstatt zu erreichen, die dank der in ihren Fertigungsprozessen generierten Daten und deren anschließender Analyse intelligente und automatisierte Entscheidungen ermöglicht. Dies erfordert die Integration von cyber-physischen Systemen in unseren Einrichtungen.

Dieses Ziel der Digitalisierung der Werkstätten beinhaltet Aufgaben wie:

- Erstellen von physischen Systemen, die Daten generieren.
- Erstellung eines IIoT-System, das die Sammlung dieser Daten sowie deren Übertragung und Erhaltung verwaltet.
- Generieren von mathematische Algorithmen, die Daten für eine intelligente und automatisierte Entscheidungsfindung analysieren.
- Integrieren von Technologien im Zusammenhang mit Industrie 4.0; OT-Netzwerke, Cybersicherheit, Robotik, Augmented / Mixed / Virtual Reality, Big Data / Smart Data, etc.
- Planung der Produktion und Wartung von Ressourcen mit Hilfe von computergestützten Managementtechniken und -werkzeugen (MES, ERP, SCADA, GPAO, etc.).
- Schaffung eines Showroom 4.0 für Unternehmen

Beschreibung der Beziehung zwischen den einzelnen Studienprogrammen und dem LAB Die Nutzung dieser Werkstatt erfolgt durch 2 professionelle Spezialisierungsprogramme (EQF 5):

1.- Fortgeschrittene Bearbeitung von Sonderwerkstoffen mit hoher Geschwindigkeit und hoher Leistung. Dieses berufliche Spezialisierungsprogramm richtet sich an leitende Techniker der Produktionsprogrammierung in der mechanischen Fertigung (800h).

Studenten, die dieses Labor nutzen, tun dies, um die folgenden allgemeinen Fähigkeiten zu erwerben:

Herstellung von Teilen mit komplexen Geometrien, aus speziellen Materialien und von großer Verantwortung in den derzeit aufstrebenden Sektoren (Luft- und Raumfahrt, Biomedizin, Wind ...) durch eine Technologie auf hohem Niveau, die auf Hochgeschwindigkeits- und Hochleistungsbearbeitung basiert, Planung und Kontrolle der Bearbeitungsprozesse und der hergestellten Produkte, Anpassung der Fertigungszeichnungen an die Bedürfnisse des Prozesses, Entwurf der Werkzeuge, Vorbereitung und Feineinstellung der Maschinen, Übernahme der Verantwortung für die Wartung der Geräte und ihrer Mechatronik auf der ersten Ebene, Erreichen der Qualitätskriterien, Einhaltung der Pläne des Unternehmens zur Vermeidung von Arbeits- und Umweltrisiken sowie der geltenden Vorschriften.

2.- Entwicklung von fortschrittlichen Projekten für Werkzeugmaschinen in der Fertigung. Dieses professionelle Spezialisierungsprogramm richtet sich an Höhere Techniker in Industriemechatronik (650h).

Studenten, die dieses Labor nutzen, tun dies, um die folgenden allgemeinen Fähigkeiten zu erwerben:

Bau von fortschrittlichen Werkzeugmaschinen für die Fertigung und Erbringung von Installations-, Wartungs- und Benutzerberatungsleistungen für den Kunden unter Verwendung von mechatronischen Techniken auf hohem Niveau; Montage von mechanischen, elektrisch-elektronischen, pneumohydraulischen und Computer-Komponenten; Installation und Inbetriebnahme der Werkzeugmaschine an ihrem endgültigen Standort; Überprüfung der Geometrie der Maschine mit fortschrittlichen Messgeräten; und Bearbeitung des maschinenaufnehmenden Teils; sowie Beratung des Kunden bei den Bearbeitungsprozessen, der Verwendung der Maschine und der Verwaltung und Durchführung ihrer Wartung, der Erreichung von Qualitätskriterien, der Einhaltung der Arbeits- und Umweltrisikopräventionspläne des Unternehmens und der aktuell geltenden Vorschriften.

Neben der Erlangung der allgemeinen Fähigkeiten, die innerhalb der mechanischen Fertigung und der industriellen Mechatronik erforderlich sind, werden sie in naher Zukunft auf die Arbeit in einer Umgebung vorbereitet, die mit Industrie 4.0 verbunden ist:

- Programmsimulation: per Computer, Maschine, CAM integriert in der Maschine, 3D-Simulation, virtuell, etc.
- Integration von Datenerfassungssystemen. Künstliche Vision-Kameras.
- Integration von Radiofrequenz-Identifikationssystemen.
- Korrektur in Echtzeit der Abweichungen der bearbeiteten Teile (Maß-, Geometrie- und Oberflächentoleranzen).
- Verwendung von Computer-Tools und Software für den Zugriff und die Verwaltung der notwendigen und generierten Dokumentation (PC, Tablet, Smartphone, Maschinenschnittstelle, integrierte CAD / CAM / ERP-Systeme, PLM, etc.).
- Registrierung des Programms und der erzeugten Dokumentation in: Ordnerstruktur, integrierte CAD / CAM / ERP-Systeme, PLM, etc.
- Bearbeitungsstrategien: hohe Leistung, hoher Vorschub, adaptive Bearbeitung, ...).
- Programmierung von Robotern (industrielle und kollaborative) für Manipulation und Bearbeitung.
- Überwachung von Computersicherheitsvorschriften und -verfahren (Cybersecurity).
- Analyse von Prozessdaten in Echtzeit (Big Data, Smart Data, ...).

PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Service	Servi	ce	Produktlebenszyklus
3.2	LAB Lebenszyklus	Investitionsplanung Fabrikkonzept		Prozessplanung	Hochlauf	Fertigung	Montage	Service	Wartı	ung	LAB Lebenszyklus
3.3	Auftrags-Lebenszyklus	Konfiguration & Auftragssequenzierung		Produktionsp termini		Fertigung Montage		Service	Kommissio Verpac		Versand
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle I	Prüfung	Fertigung	Montage Service		Wartung		Modernisierung
3.5	Indirekte Funktionen	SCM	Vertrieb	Einka	auf	HR	Finazen/C	ontrolling		QI	М
3.6	Materialfluss		Kontinuierliche Pro	oduktion		Diskrete fertigung					
3.7	Prozesstyp	Masser	nproduktion	Serienpro	duktion		Kleinserienfe	rtigung		Kleir	serienfertigung
3.8	Fertigungsorganisation	Ortsgebund	dene Fertigung	Werkbankt	ertigung		Werkstattfer	tigung		Wer	kstattfertigung
3.9	Automatisierungsgrad	М	anuell	Teilau	tomatisiert/hybri	hybride Automatisierung		ng		utomatisch	1
3.10	Fertigungsmethoden	Schneiden	Trad. Primäre Fo	Formgebung Additive Fertigung		Additive Fertigung Fügen		Beschic	htung	Änderung I	Materialeigenschaften
3.11	Fertigungstechnologien		Physisch			Chemisch			Biologisch		

Diese Werkstatt nimmt eine Fläche von 600m2 ein, in der 24 Studenten gleichzeitig arbeiten können. Der Raum ist in 3 verschiedene Zellen unterteilt, die sich aus 9 verschiedenen Maschinen zusammensetzen. Die Zellen, die wir finden können, sind: CNC-Steuerungen, Robotik und Simulation Mockups (1), Multitasking-Maschinen, Bearbeitungszentren, Hochpräzisionsschleifmaschine und Submerged Wire EDM (2) und flexible und intelligente modulare Fertigungssystem (3).

Spezifische Ausrüstung, die im LAB verwendet wird, Adressierung von Industrie 4.0:

Die Idee der Werkstatt ist es, mindestens auf dem gleichen Niveau voll digitalisiert zu werden, auf dem die Industrie ihre Produktionsanlagen digitalisiert. Dies bietet einen vollständig digitalisierten TVET-Trainingsraum, der nach den gleichen Industriestandards gestaltet ist.

Die Werkstatt umfasst unter anderem folgende Merkmale:

- OT-Netzwerk + Cybersecurity (TITANIUM) zur Vermeidung von externen Eingriffen.
- IIoT-Systeme zur Überwachung von Fertigungsprozessen und Datenerfassung: SAVVY, INGETEAM, AINGURA, VIXION, ERIS, PTC (ThingWorx).
- Kommunikation zwischen allen Maschinen und IloT-Systemen über WiFi.

4.1	Lernumgebung	Rein physikalisch (Planung + Ausführung)		tützt durch digitale ,IT-Integration")	Physisch, virt	uell erweitert	Rein virtuell (Planung + Ausführung)
4.2	Umgebungsskala		Verkleinert			Lebens	groß
4.3	Arbeitssystemebene	Arbeitsort	Arbeits	ssystem	We	erk	Netzwerk
4.4	Enablers für Verädnerbarkeit	Mobilität	Kompatibi	lität	Skalierbarkeit	Universalität	
4.5	Veränderbarkeitsdimensi onen	Layout & Logistik	Produktde	sign	Technologie	Produktmengen	
4.6	IT-Integration	IT vor SOP (CAD, CAM	, Simulation)	IT nach SOP (PPS	T nach SOP (PPS, ERP, MES)		oduktion (CRM, PLM)

Zu welchem Zweck werden verschiedene IT-Integrationen eingesetzt:

Die im Labor integrierten Elemente stehen im Zusammenhang mit der Digitalisierung der Prozesse. Maschinenkommunikation und Datenerfassung.

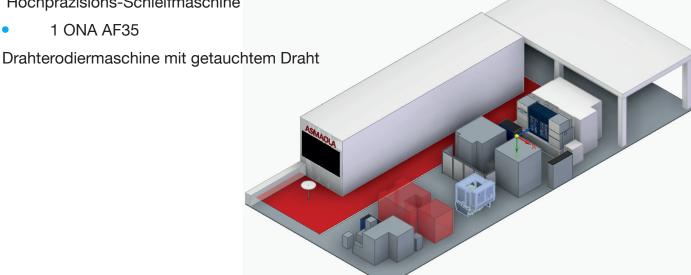
Der Zweck dieser Geräte und der zugehörigen IT-Ressourcen ist es, die Schüler mit allen Programmen vertraut zu machen, die für die Arbeit an digitalisierten Umgebungen verwendet werden. Die Daten, die während des Lernprozesses entstehen, werden analysiert und von den Schülern als Lernaktivität zur Verbesserung des Gesamtprozesses genutzt. Die Schüler werden mit der Verwendung von Datenanalysetools vertraut und lernen, Entscheidungen auf der Grundlage realer Ergebnisse zu treffen.

Allgemeine Einstellungen des Werkzeugs:

Diese Werkstatt nimmt eine Fläche von 600m2 ein, in der 24 Studenten gleichzeitig arbeiten können. Der Raum ist in 3 verschiedene Zellen unterteilt, die sich aus 9 verschiedenen Maschinen zusammensetzen. Die Zellen, die wir finden können, sind: CNC-Steuerungen, Robotik und Simulationsmodelle (1), Multitasking-Maschinen, Bearbeitungszentren, Hochpräzisions-Schleifmaschine und Senkerodiermaschine (2) sowie ein flexibles und intelligentes modulares Fertigungssystem (3).

Der Bereich CNC-Steuerungen, Robotik und Simulation Mockups (1) wird durch 7 Komponenten vervollständigt, die sind:

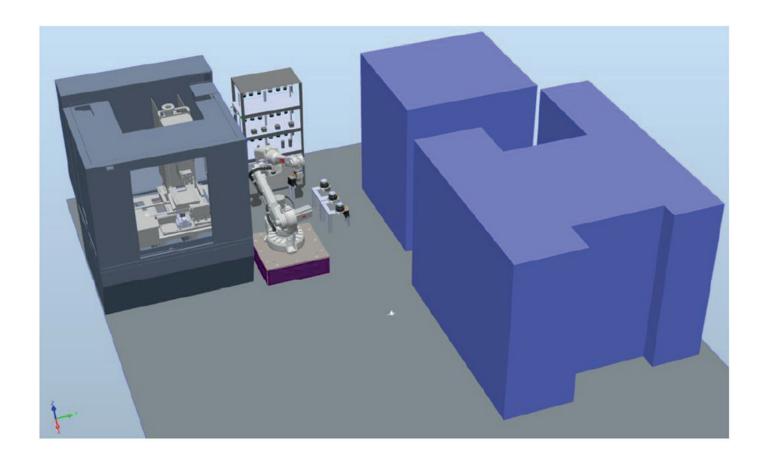
Diese Werkstatt nimmt eine Fläche von 600m2 ein, in der 24 Studenten gleichzeitig arbeiten können. Der Raum ist in 3 verschiedene Zellen unterteilt, die sich aus 9 verschiedenen Maschinen zusammensetzen. Die Zellen, die wir finden können, sind: CNC-Steuerungen, Robotik und Simulationsmodelle (1), Multitasking-Maschinen, Bearbeitungszentren, Hochpräzisions-Schleifmaschine und Senkerodiermaschine (2) sowie ein flexibles und intelligentes modulares Fertigungssystem (3).


- 1. Der Bereich CNC-Steuerungen, Robotik und Simulation Mockups (1) wird mit 7 Komponenten vervollständigt, die sind:
- 1 Siemens SINUMERIK ONE CNC
- 1 Fagor 8065 CNC
- 2 Simulation mockups
- 1 C
- Kollaborative UR5e Roboter
- Daten Akquisition und Analysesystem
- 2.- Der Bereich Multitasking-Maschine, Bearbeitungszentren, Hochpräzisions-Schleifmaschine und Tauchdrahterodieren (2) wird durch 5 Maschinen vervollständigt, welche sind:
- 1 IBARMIA ZVH 38

Multitasking Maschine

1 KONDIA SEASKA

5 Achsen-Präzisionsfräsmaschine


- 1 KONDIA P60v2
- 3-Achsen-Präzisionsfräsmaschine
- 1 DANOBAT LG-600 Hochpräzisions-Schleifmaschine

- 3.- Der Bereich Flexibles und intelligentes modulares Fertigungssystem (3) wird durch 1 Maschine und 1 kollaborierenden Roboter vervollständigt, die sind:
- 1 BERKOA IKASMAK 5.1 Multitasking Maschine
- 1 Collaborative UR5e Roboter

High Precision Grinding Machine

- 1 ONA AF35
- Submerged wire EDM Machine

5.1	Material		Materiel	ll (physisches p	orodukt		I	mmateriell (Se	rvice)	
5.2	Produktform		Stück	gut		Schütt	gut	Strömu	ngsrodukte	
5.3	Produktherkunft	E	Eigene Entwicklun	g	Entwic	klung durch Teiln	ehmer	Externe	Entwicklung	
5.4	Marktfähigkeit des Produktes	Aut	f dem Markt verfüg	gbar	Am Markt ve	rfügbar, aber nich vereinfacht	it didaktisch	Nicht auf dm	e Markt verfügbar	
5.5	Produktfunktionalität	Fun	ktionsfähiges Pro	dukt		n angepasstes Pr chränkter Funktio		Ohne Funktion / Anwendung nur zur Deonstration		
5.6	Anzahl verschiedener Produkte	1 Produkt	2 Produkte	3-4 Produkte	> 4 Produkte	Flexibel, vpon Teilnehmern entwicklet		Annahme von Aufträgen		
5.7	Anzahl Produktvarianten	1 Variante	2-4 Varianten	4-20 Varianten		Flexibel, je nach teilnehmer		Bestimmt	durch Aufträge	
5.8	Anzahl der Komponenten	1 Komponente	2-5 Komponenten	6-20 Komp	oonenten	21-50 Komponenten	51-100 Kor	nponenten	> 100 Komponenten	
5.9	Weitere Verwendungen des Produktes		erwendung/- vertung	Ausst	Ausstellung		Werbegeschen k		Entsorgung	

Weitere Beschreibung des gefertigten Produkts des LAB

In diesem Labor werden zum einen von den Studenten der Fachrichtung selbst entworfene Sets hergestellt. Diese Bausätze haben eine eingeschränkte Funktionalität, weil sie keine zugelassenen Produkte sind.

Andererseits, da dieses Labor technologische Innovationsdienstleistungen erbringt und Aufträge von Unternehmen angenommen werden, in denen wir echte Teile oder Baugruppen herstellen müssen, haben sie volle Funktionalität.

118

6.1	Kompetenzklassen	Fach- und Method	lenkompetenzen		ommunikative etenzen	Persönlichkeit	skompetenzen	Handlungs-		
6.2	Dimensionen Lernziele	Kogr	nitiv		Affektiv			Psycho-m	otorisch	
6.3	Lernszenariostrategien	Anweisung		Vorführung		Geschlosse	nes Szenario	C	Offenes Szenari	o
6.4	Art der lernumgebung	Greenfie	eld (Entwicklung de	r Fabrikumgeb	ung)	Brownfie	ld (Verbesserun	g der bestehe	nden Fabrikum	gebung)
6.5	Kommunikationskanal	Ler	nen vor Ort (in Fab	rikumgebung)			Fernverbindu	ng (zur Werksı	umgebung)	
6.6	Grad an Autonomie	Beauf	tragt	Selba	stgesteuert/-reo	guliert	:	Selbstbestimmt/-organisiert		
6.7	Rolle des Trainers	Präsentator	Modera	ator		Coach			Ausbilder	
6.8	Art der Ausbildung	Lernprogramm	Praktischer L	aborkurs	Seminar		Workshop		Projektarbeit	
6.9	Standardisierung von Schulungen		Standardisierte Sc	hulungen			Individuelle Schulur		ungen	
6.10	Theoretische Grundlage	Voraussetzung	Im Voraus (en bloc)	Im Wechsel m		Bedarfso	rientiert	Dan	ach
6.11	Auswertungsstufen	Feedback der teilnehmer	Lernen der Teilnehmer		Transfer in reale Fabri		Wirtschaftlcih der Sch	-	Return on tra	ainings / ROI
6.12	Lernerfolgskontrolle	Wissenstest (schriftlich)	Wissenstest (mündlich)	Schriftlicher Bericht Mündlcihe		ne Präsentation Praktisch		e Prüfung	Keine

Spezifische Kompetenzen, die im Labor angesprochen werden, und das verwendete Curriculum:

Von den im Zentrum angebotenen Ausbildungsprogrammen wird der Einsatz dieses Workshops von 2 beruflichen Spezialisierungsprogrammen (EQR 5) durchgeführt:1.-Advanced machining of special materials at high speed and high performance. This professional specialization program is aimed at Senior Technicians in Production Programming in Mechanical Manufacturing (800h).

Durch die Entwicklung der folgenden Lernbereiche wird die unten angegebene allgemeine Kompetenz erworben. 168 Stunden finden im Zentrum und der Rest (632 Stunden) im Unternehmen statt:

- Anpassung von Ebenen und komplexen Körpern für die Hochgeschwindigkeits- und Hochleistungsbearbeitung (90h).
- Spezielle Werkstoffe, die in aufstrebenden Branchen eingesetzt werden (70h).
- Planung der Bearbeitung komplexer Figuren in Sonderwerkstoffen bei hoher Geschwindigkeit und hoher Leistung (210h).
- Bearbeitung komplexer Figuren in Sonderwerkstoffen mit hoher Geschwindigkeit und hoher Leistung (180h).
- Verifizierung von Teilen, die mit hoher Geschwindigkeit und hoher Leistung bearbeitet wurden (130h).
- Projekt Hochgeschwindigkeits- und Hochleistungsbearbeitung (120h).

Allgemeine Kompetenzen:

Herstellung von Teilen mit komplexen Geometrien, aus speziellen Materialien und mit großer Verantwortung in den derzeit aufstrebenden Sektoren (Luft- und Raumfahrt, Biomedizin, Windkraft ...) durch eine Technologie auf hohem Niveau, die auf Hochgeschwindigkeits- und Hochleistungsbearbeitung basiert, Planung und Kontrolle der Bearbeitungsprozesse und der hergestellten Produkte, Anpassung der Fertigungszeichnungen an die Bedürfnisse des Prozesses, Konstruktion der Werkzeuge, Vorbereitung und Feineinstellung der Maschinen, Übernahme der Verantwortung für die Wartung der Anlagen und ihrer Mechatronik auf erster Ebene, Erreichen der Qualitätskriterien, Einhaltung der Pläne des Unternehmens zur Verhütung von Arbeits- und Umweltrisiken sowie der geltenden Vorschriften.

2.- Entwicklung von fortschrittlichen Projekten für Werkzeugmaschinen in der Fertigung. Dieses professionelle Spezialisierungsprogramm richtet sich an Höhere Techniker in Industriemechatronik (650h).

Durch die Entwicklung der folgenden Lernbereiche wird die unten angegebene allgemeine Kompetenz erworben. 198h im Zentrum und der Rest (452h) im Unternehmen:

- Zusammenbau der Struktur, Komponenten und Vorrichtungen der fortschrittlichen Fertigungswerkzeugmaschine (240h).
- Funktionsoptimierung von Werkzeugmaschinen (90h).
- In-Prozess- und Post-Prozess-Messung der Bearbeitung (90h).

- Anpassung von Werkzeugmaschinen an die Produktionseigenschaften (200h).
- Transport und Positionierung von schweren Komponenten von modernen Werkzeugmaschinen (30h).

Aufbau von hochentwickelten Werkzeugmaschinen für die Fertigung und Erbringung von Installations-, Wartungs- und Benutzerberatungsleistungen für den Kunden unter Verwendung hochentwickelter mechatronischer Techniken, Montage mechanischer, elektrisch-elektronischer, pneumohydraulischer und computergestützter Komponenten; Installation und Inbetriebnahme der Werkzeugmaschine an ihrem endgültigen Standort; Überprüfung der Geometrie der Maschine mit hochentwickelter Messtechnik; Bearbeitung des Werkstücks, das die Maschine aufnimmt; sowie Beratung des Kunden in Bezug auf die Bearbeitungsprozesse, die Verwendung der Maschine und die Verwaltung und Durchführung ihrer Wartung, die Erreichung von Qualitätskriterien, die Einhaltung der Pläne des Unternehmens zur Vermeidung von Arbeits- und Umweltrisiken sowie der geltenden Vorschriften.

Alle diese Module bereiten, zusätzlich zur Erlangung der allgemeinen Fähigkeiten, die innerhalb der mechanischen Fertigung und der industriellen Mechatronik erforderlich sind, auf die Arbeit an verschiedenen Fähigkeiten im Zusammenhang mit I 4.0 vor. Das sind unter anderem:

- Programmsimulation: per Computer, Maschine, CAM integriert in der Maschine, 3D-Simulation, virtuell, etc.
- Integration von Datenerfassungssystemen. Künstliche Vision-Kameras.
- Integration von Radiofrequenz-Identifikationssystemen.
- Korrektur in Echtzeit der Abweichungen der bearbeiteten Teile (Maß-, Geometrie- und Oberflächentoleranzen).
- Verwendung von Computer-Tools und Software für den Zugriff und die Verwaltung der notwendigen und generierten Dokumentation (PC, Tablet, Smartphone, Maschinenschnittstelle, integrierte CAD / CAM / ERP-Systeme, PLM, etc.).
- Registrierung des Programms und der erzeugten Dokumentation in: Ordnerstruktur, integrierte CAD / CAM / ERP-Systeme, PLM, etc.
- Bearbeitungsstrategien: hohe Leistung, hoher Vorschub, adaptive Bearbeitung, ...).
- Programmierung von Robotern (industrielle und kollaborative) für Manipulation und

Bearbeitung.

- Überwachung von Computersicherheitsvorschriften und -verfahren (Cybersecurity).
- Analyse von Prozessdaten in Echtzeit (Big Data, Smart Data, ...).

Lernmethoden

Das zentrale Element, an dem sich das gesamte Lernmodell orientiert, ist das Kollaborative Lernen auf Basis von Herausforderungen.

Die Präsentation einer problematischen Situation, ihre Umwandlung in eine Herausforderung sowie der gesamte Prozess bis zum Erreichen eines Ergebnisses ist sowohl auf der Grundlage der technischen und spezifischen Kompetenzen jedes Programms strukturiert, als auch auf der Grundlage der übergreifenden Kompetenzen, die derzeit strategisch sind, wie: Autonomie beim Lernen, Teamarbeit, Orientierung auf außergewöhnliche Ergebnisse, digitale Kompetenzen usw. ...

Problematische Situationen, in allen Fällen, werden zu einer Klasse in Teams konfiguriert angehoben, wo der Arbeitsprozess hat die Schüler zu ermöglichen, die Situation als Herausforderung zu leben und, von dort, hat die Möglichkeit, das notwendige Wissen zu generieren, die Sie die besten Lösungen zu ermöglichen.

Die Annäherung an das Modell durch Herausforderungen erfordert eine Neuinterpretation der Mechanik des Lernens. Die Interpretation, die am besten zum Modell passt, ist, das Lernen als einen Evolutionsprozess zu verstehen, für den die Schüler verantwortlich sind. Lernen durch Herausforderungen ermöglicht ein Szenario, in dem die Schüler individuell und im Team in Aktion treten und ein Ergebnis produzieren. Dieses Ergebnis wird interpretiert, es wird analysiert, was funktioniert hat und was nicht, und es wird entschieden, was bei der nächsten Herausforderung anders gemacht werden soll, um höhere Ziele zu erreichen.

Die Hauptidee dieser Methodik besteht darin, Teams zu bilden und für sie einen Vertrag zu erstellen, in dem die Verpflichtungen festgehalten werden, die die Mitglieder der einzelnen Teams eingegangen sind. Diese Verträge werden sich weiterentwickeln und transformieren, wenn die Teams Erfahrungen einbringen. Bei der Arbeit in der Werkstatt müssen sich diese Teams selbst verwalten, indem sie die Arbeit aufteilen, um die Herausforderung zu bewältigen. Im Allgemeinen werden die Maschinen einzeln oder paarweise eingesetzt.

Diese Methodik ermöglicht uns eine interdisziplinäre Arbeitsweise, bei der die Studenten durch Herausforderungen, die nahe an der Unternehmensrealität liegen, an übergreifenden Kompetenzen arbeiten können. Der nächste Schritt wäre sein, eine Lernfabrik zu schaffen, die den Betrieb der Werkstatt einer realen Werkstatt gleichstellt.

METRIK

7.1	Aantal deelnemers per opleiding	1-5 deelnemers	5-10 deelnemers	10-15 deelnemers	15-30 deelnemers	> 30 deelnemers		
7.2	Aantal gestandaardiseerde opleidingen	1 opleiding	2-4 opleidingen	5-10 opleid	dingen	> 10 opleid	lingen	
7.3	Gemiddelde duur van een enkele opleiding	≤1 dag	> 1 dag tot ≤ 2 dagen	> 2 dagen tot ≤ 5 dagen	> 5 dagen tot ≤ 10 dagen	> 10 dagen tot ≤ 20 dagen	> 20 dagen	
7.4	Deelnemers per jaar	< 50 deelnemers	50-200 deelnemers	201-500 deelnemers	501-1000 deelnemers	> 1000 deelr	nemers	
7.5	Bezettingsgraad	< 10%	> 10 tot ≤ 20%	> 20% tot ≤ 50%	> 50% tot ≤ 75%	> 75%	6	
7.6	Grootte van LAB	≤ 100 m²	$> 100 \text{ m}^2 \text{ tot} \le 300 \text{ m}^2$	$> 300 m^2$ tot $\leq 500 m^2$	$> 500 \text{ m}^2 \text{ tot} \le 1000 $ m^2	> 1000	m²	
7.7	FTE in LAB	<1	44288	44444	42278			

In diesem Labor können 24 Studierende/Mitarbeiter gruppiert in 3 Zellen arbeiten

WEITERE INFORMATIONEN UND ASPEKTE ZUR VERBESSERUNG

8.1	Weitere Informationen	Bilder	Video
8.2	Aspekt zur Verbesserung	Technisch	Methodologisch

Wir haben geplant, grafische Dokumentationen wie Videos und Fotos zu bearbeiten, um die neuen Einrichtungen anderen Berufsbildungszentren, Unternehmen und Institutionen zu präsentieren, obwohl wir noch die letzten Details des Workshops umsetzen müssen, um dies tun zu können. Wir hoffen, dies zwischen Januar und Februar 2021 tun zu können.

Aspekte zur Verbesserung:

Stärken und Schwächen des LAB

Die größte Stärke, die wir derzeit haben, ist zum einen, dass die härteste und am wenigsten sichtbare Arbeit getan ist; OT-Netzwerk, Cybersicherheit, Datenerfassungs- und Überwachungssysteme (IIoT), Kommunikation zwischen Maschinen und IIoT-Systemen.

Und zum anderen haben wir Projekte mit verschiedenen Lieferanten, die an einer Zusammenarbeit interessiert sind, und Unternehmen, die bereit sind, mit uns an Innovationsprojekten teilzunehmen, die auf die 4.0-Strategie ausgerichtet sind.

Und auf der anderen Seite haben wir als Schwachstelle eine lange Reise zur Implementierung von Intelligenz in unsere Produktionsprozesse durch Datenanalyse für intelligente und automatisierte Entscheidungsfindung und die Integration aller unserer Systeme mit dem ERP.

Smart Factory LAB

■ Allgemeines Ziel/Zweck (kurze Zusammenfassung):

Das mittelfristig angestrebte Ziel ist es, dass die Studierenden in einer Umgebung lernen können, die auf Industrie 4.0 ausgerichtet ist. Dazu wird die Lehrwerkstatt in ein digitalisierungsbasiertes Design umgewandelt

Jahr:

1976

Laborgröße (qm):

1800

■ Allgemeine Informationen - Übersichtstabelle

	Name of the LAB			Smart Factor	ry				MAIN PURPOSI	:	
	VET/HVET centre			CIFP USURBIL	LHII				Education	х	
GENERAL INFORMATION	Floor space of the lab (sqm)			1800					Training	х	
	Main topic/learning content		Indus	try 4.0 - SMART MAI	NUFACTURING				Research/Applied innovation	n X	
	I4.0 related technologies		Developmen	nt of an advanced man	ufacturing process	, monitored and	controlled by	a smart managemen	system, ERP	1	
	Learning content		Pilot enviror	nment, didactics for st	udents from vocati	onal training and	employees, In	novation transfer, ap	oplied research		
PURPOSE	Secondary purpose			Production n	nanagement, Smart	t maintenance an	d I4.0 related	technologies.			
	LAB type		Specific			Mixed			Learning Facto	ory	
			Name of the programmes carr	ied out on the Lab		EQF Level	Lab hours	N° subjects on the la	Hour/Week x n° of weeks	N° students (3)	
		Pro	duction Management and Me	chanical Manufacturinç	9	5	198 126	2	6x33 6x21	3x20 3x20	
LEARNING CONTENTS	ONTENTS Learning programmes/study programmes/levels		Machining Tech	nician		4	198	3	11x33 5x33 10x21	-	
			=			_	_	=	-		
						_				<u> </u>	
			_			_	_	_	_	-	
	N° of cell	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6	Cell 7	Cell 8	Cell 9	
	Category of cell	I+D+i area	Raw material, Cutting machine, Collaborative robot	Palletized warehouse	Lathes	Mills	Grinding	CNC	END	Tool warehouse	
SETTINGS	Nº machines	5	2+1	1	24	14	4	6	2	1	
	I4.0 Enabler technologies used and implementation level	Robotics Additive Manufacturing		Cloud	CPS			Big data analytics	Ai	loT/lloT	
		Sensors/Actuators	RFID	M2M	Cybersecurity	Digital twin	Others				

BETRIEBSMODELL

1.1	Betreiber		Akademische Institution	1	Nicht-akademische Institution							Gewinnorientierter Betreiber		
1.1	Betreider	Universitäty	Hochschule	ВА	Berufs	sschule/Gymn	asium	Kammer	Gewerkschaft	Arbeitgeberv erband	Industrielles Netzwerk	Pädag xteme Entwicklu Geschäftsmitte Geschäftsmitte ge Förderung (Programme > 3 Jal	Produzierendes Unternehmen	
1.2	Trainer	Professor	Forscher		Studentisc	he Hilfkraft		Technsic	her Experte/Int.	Spezialist	Berater	lles Beratung Produzier	dagoge	
1.3	Entwicklungen		Eigene Entwic	dung	Extern geförderte Entwicklung						E	xterne Entwick	dung	
1.4	Anfangsfinanzierung		Interne Mit		Öfentliche Mittel						Geschäftsmi	itel		
1.5	Laufende Finanzierung		Interne Mit	el				Öfentliche Mitt	tel					
1.6	Förderkontinuität	Kurzfris	stige Finanzierung z.B.: ei	nzelne Veranstal	tungen)	Mittelfristi	ge Förderunge	n (z.B. Projekt	e und Programm	ne <3Jahre)				
1.7	Geschäftsmodell für		Offe	ne Modelle				Conchings	ana Madalla (Trai	ningo pro gram				
1.7	Schulungen	Club-M	Modelle	Kursg	ebühren			descriiosse	are wodelie (Ifal	migsprogram	ne nur tur EMZ	eiuntemenille	'	

Hinweis: In 1.7 Geschäftsmodelle für die Ausbildung gibt es verschiedene Modalitäten: Für Studenten im Erstausbildungsmodell sind die Programme staatlich finanziert. Für maßgeschneiderte Schulungen für Unternehmen sind es kostenpflichtige Kurse. Wir verwenden auch geschlossene Modelle.

Das Hauptziel des Projekts ist es, eine intelligente mechanische Werkstatt zu schaffen, in der wir, ausgehend von der Forschung, Wissen erwerben können, um es später in den verschiedenen Bereichen und Gebieten unserer Organisation zu entwickeln.

Aus der mechanischen Abteilung von Usurbilgo Lanbide Eskola arbeiten wir im Rahmen des Projekts "Taller 4.0" und nach den Erfahrungen des Intelligent Tool Store, der seit September 2016 in Betrieb ist, an der Schaffung eines integralen 4.0-Systems der Lagerverwaltung, das im Rahmen dieses gemeinsamen Projekts ausgeführt werden soll.

Funktionalität vom Eingang der Rohstoffe bis zum fertigen Produkt, sowie die Kontrolle über alle Verbrauchsmaterialien und Ersatzteile für die mechanische Fertigung in einer agilen Art und Weise und Online-Management.

Dieses System wird auch das Lager der Rohmaterialbestände, Ersatzteile, Hardware, Produktionsprozess, Rückverfolgbarkeit, Ausrüstung, Handbücher-Dokumentation-Geschichte der Maschinen verwalten. Kurz gesagt, der gesamte mechanische Fertigungsbestand.

Dieses Projekt wird dazu beitragen, eine Industrie 4.0-basierte Schulungsmethodik im Bereich Smart Factory für verschiedene Zielgruppen zu entwickeln:

1 - Erstausbildungsmodell:

Unser Zentrum ist ein öffentliches Zentrum, das von der stellvertretenden Leitung der Abteilung für Berufsschulen der baskischen Regierung abhängt. Das Personal des Zentrums ist zu 100 % von der baskischen Regierung abhängig. Die Anzahl der Lehrer hängt direkt von der Anzahl der Schülergruppen in der Erstausbildung und den Projekten ab, an denen wir teilnehmen. Unsere Schule hat normalerweise etwa 80 Lehrer für 25 Gruppen und 470 Schüler.

Die Erstausbildung wird mit öffentlichen Mitteln finanziert, um einige Kosten zu decken, wie z. B. Energieverbrauch, Kommunikation, Kauf von Rohmaterial oder Anschaffung von Ausrüstung. Note: in 1.7 Business models for training there are different modalities: For students in the initial training model, the programs are state funded. For tailored training for companies, they are fee courses. We also use closed models.

Von den Ausbildungsprogrammen, die im Zentrum angeboten werden, wird dieses Labor von 2 Programmen genutzt: Techniker in der Zerspanungstechnik (EQF Level 4), Senior Technician in der Produktionsplanung in der mechanischen Fertigung (EQF 5).

Das Programm Zerspanungstechniker nutzt das Labor in 3 seiner Module. Im 1. Jahr Fertigung durch Zerspanung (363h) und im 2. Jahr CNC (252h) und Fertigung durch Abrasion, EDM, Schneiden und Umformen, additive Fertigung und durch spezielle Verfahren (210h).

Das Programm des Höheren Technikers in der Programmierung der Produktion in der mechanischen Fertigung nutzt das Labor auf 3 seiner Module. Im 1. Jahr Mechanische Fertigungstechniken (198h, 11 Credits) und im 2. Jahr CNC (240h, 18 Credits) und CAM (40h, 5 Credits).

Das Projekt betrifft zwei Stockwerke desselben Gebäudes, in dem sich das Zerspanungslager im Erdgeschoss und die Bearbeitungswerkstatt im Obergeschoss befindet. Die Bearbeitungswerkstatt wird mit den im Zuschnittlager geschnittenen Materialien über das vertikale Palettenlager versorgt.

- Programmsimulation: per Computer, Maschine, CAM integriert in der Maschine, 3D-Simulation, virtuell, etc.
- Integration von Datenerfassungssystemen. Künstliche Vision-Kameras.
- Integration von Radiofrequenz-Identifikationssystemen
- Einsatz von Computer-Tools und Software für den Zugriff und die Verwaltung der notwendigen und generierten Dokumentation (PC, Tablet, Smartphone, Maschinenschnittstelle, integrierte CAD / CAM / ERP-Systeme, PLM, etc.)
- Registrierung des Programms und der erzeugten Dokumentation in: Ordnerstruktur, integrierte CAD / CAM / ERP-Systeme, PLM, etc.
- Programmierung von Robotern (Industrie- und kollaborative) zur Manipulation und Bearbeitung.
- Analyse von Prozessdaten in Echtzeit (Big Data, Smart Data, ...).

2 - Schulungen für Unternehmen:

Wir haben Kurse, die vom Industrieministerium der baskischen Regierung finanziert werden, für arbeitslose Techniker und aktive Techniker. Bei den Kursen für arbeitslose Techniker handelt es sich um lange Kurse, etwa 500 Stunden, mit dem Ziel, eine Akkreditierung zu erhalten. Bei den Kursen für aktive Techniker handelt es sich um kürzere Kurse (ca. 50 Stunden), die ihnen helfen, ihre Kenntnisse zu verbessern.

Bei den maßgeschneiderten Schulungen für Unternehmen handelt es sich um offene Kurse, die von dem Unternehmen, das den Kurs fordert, finanziert werden.

Für die Verwaltung der Kurse des Zentrums für Unternehmen, etwa 3000 Stunden/Jahr, hat unser Zentrum eine Stiftung namens Zubigune (www.zubigune.com).

Die Stiftung wurde von Unternehmen in der Region gegründet mit dem Ziel, Berufsbildungszentren und Unternehmen in der Umgebung zu unterstützen. Die Stiftung besteht aus 7 Personen für die Verwaltung der Projekte und aus Personal, das vorübergehend für die Entwicklung der Projekte eingestellt wird.

3 - Angewandte Innovation

Die angewandten Innovationsprojekte von TKGUNE sind Kooperationsprojekte mit kleinen und mittleren Unternehmen mit dem Ziel, die Unternehmen bei ihren Innovationen zu unterstützen und das im Projekt erworbene Wissen mit den Schülern in den Unterricht zu übertragen. Diese Innovationsprojekte werden von den Lehrkräften und in Zusammenarbeit mit den Unternehmen entwickelt.

4 - Forschung

Die SMART FACTORY von Usurbilgo Lanbide Eskola wird auch in einigen Forschungsprojekten eingesetzt, die in Zusammenarbeit mit verschiedenen Universitäten entwickelt werden, wie z. B.:

- Entwicklung von Fertigungsprozessen.
- Datenanalyse.
- Psychologie des Verhaltens von Studenten.
- Unternehmertum.
- Betriebswirtschaft.

ZWECK & ZIELSETZUNGE

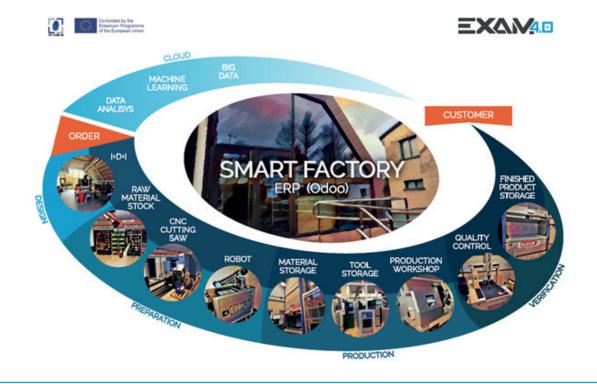
2.1	Hauptzweck		Aus	sbildung					Beruf	sbildung						onderzoe	k		
2.2	Sekundärer Zweck		Testumgebur	ng/Pilotumg	ebung		Indust	trieproduktio	on		Innov	ationstransfer			Α	nzeige für Pr	oduktion		
				Studierend	de					Arbeitnehme	r								
2.3	Ziepgruppen für Bildung und Training	Schüler	Bachelor	Master	Doktoranden	Augzuhildanda	Englyraft		ebildete	Ungelernte		managers		L	Internehmer	Freiberufle	Arbeit		Öffentlich ugänglich
			Bachelor	Waster	Doktoranden	Oranden Auszubildende Pachkraft Fachkraft Fachkraft Fachkraft		Unteres Management	Mittleres Management	Top- Managem	ent								
2.4	Gruppenkonstellatio n		hor	mogeen		heterogen (Wissensstand, Hierarchie, Studiere							ierende + M	litarbeiter	, etc.)				
2.5	Zielindustrien		Maschinen-	und Anlage	nbau	Automobil				Logis	tik	1	rans port			FMCG		uft- und R	Raumfahrt
2.5	Zielindustrien		Chemise	che Industri	ie	В	ektronik			Konstru	struktion Versicherungen/E			Bankwesen		Textil			
2.6	Fachbezogener lerninhalt		onsmanag ent & isation.	Ressourc	ceneffizienz	Lean-Management Automatisierung				CPPS	Abeitssystemgesta Itung HMI					alogistik, D Managem	gistik, Design &		
2.7	Rolle des LAB für die Forschung					Forschungsobjekt				,			Fact	or die onderzoe	k mogelijk m	aakt			
2.8	Forschungstehmen	Produktionsmanagement & Organisation				n Ressourceneffizienz Lean Management			Automatisie	rung (ng CPPS Veränderbarkei		parkeit	HMI Didaktik		tik			

Hauptzweck. Die Workshops sind hauptsächlich für die Erstausbildung gedacht. Der ausführende Teil der Herausforderungen, eine wichtige Phase für den Studenten, um die richtige Fähigkeit zu bekommen, werden von den Studenten in den Workshops realisiert. Dies geschieht in der Regel an den Vormittagen.

An den Nachmittagen sind die Werkstätten für Weiterbildungskurse vorgesehen, die sich an aktive oder arbeitslose Techniker richten. Wie bereits beschrieben, arbeiten wir auch mit Kursen auf Anfrage, bei denen die Kurse speziell für ein oder zwei Unternehmen vorbereitet werden.

Sekundäre Zwecke. Im Rahmen des Programms namens ZUBILAN führen die Studenten des ersten und zweiten Jahres eine Produktion für Unternehmen durch, die ein Teil mit realen Marktspezifikationen herstellen. Es handelt sich um eine kleine Produktionsserie, die dem Studenten in seinem Lernprozess hilft.

Die angewandte Innovation ist eine weitere der Arbeitslinien von Usurbilgo Lanbide Eskola. Dieses Projekt heißt TKGUNE (www.tkgune.eus), es ist der dritte Arbeitsbereich des Zentrums, und dank ihm arbeiten wir mit kleinen und mittleren Unternehmen in Projekten zusammen, um ihr Innovationssystem zu entwickeln.


Außerdem entwickeln wir in Zusammenarbeit mit verschiedenen Universitäten Forschungsprojekte mit Universitätsstudenten, die gerade ihren Abschluss machen.

PROZESS

3.1	Produktlebenszyklus	Produktplanung	Produktentwicklung	Produktdesign	Schneller Prototypenbau	Fertigung	Montage	Service	Service		Produktlebenszyklus
3.2	LAB Lebenszyklus	Investitionsplanu ng	Fabrikkonzept	Prozessplanung	Hochlauf	Fertigung	Montage	Service	Wartung		LAB Lebenszyklus
3.3	Auftrags-Lebenszyklus	Konfiguration & Bestellung	Auftragssequenzierung		splanung & - nierung	Fertigung	Montage	Service	Kommissionierung & Verpackung		Versand
3.4	Technologielebenszyklus	Planung	Entwicklung	Virtuelle	Prüfung	Fertigung	Montage	Service	Wartung		Modernisierung
3.5	Indirekte Funktionen	SCM	Vertrieb	Ein	kauf	HR Finazen/Controlling			QM		
3.6	Materialfluss	Kontinuierliche Produktion				diskrete fertigung					
3.7	Prozesstyp	Massenproduktion		Serienproduktion			Kleinserienfe	tigung		Kleinserienfertigung	
3.8	Fertigungsorganisation	Ortsgebundene Fertigung		Werkbankfertigung			Werkstattfer	igung Wo		Wei	rkstattfertigung
3.9	Automatisierungsgrad	Manuell		Teilautomatisiert/hybrid		de Automatisierung		Vollautomatisch			
3.10	Fertigungsmethoden	Schneiden	Trad. Primäre For	mgebung	Additive Fertigung	Additive Fertigur	ng Fügen	Beschio	hichtungÄnderun		Materialeigenschaften
3.11	Fertigungstechnologien	Physisch			Chemisch			biologisch			

Mit einer Gesamtbetriebsfläche von 2000 Quadratmetern können in unserer Werkstatt, je nach Zielsetzung der Schulungen, unterschiedliche Prozessabläufe gestaltet werden.

Die Werkstatt ist in Zellen aufgeteilt, in denen verschiedene Konfigurationen möglich sind, wie im nächsten Bild beschrieben:

Beschreibung der verschiedenen Teile des Smart Factory-Prozesses:

Forschungs-, Entwicklungs- und Innovationsbüro

In diesem Büro wird der Auftrag des Kunden entgegengenommen und von den Lehrern in eine Herausforderung für die Schüler umgewandelt. Dieser Auftrag kann sowohl eine theoretische Übung sein, die von den Lehrern erstellt wurde, als auch ein echter Auftrag, der von einem Unternehmen kommt.

Das Definieren dieser Herausforderung bedeutet:

- den Fertigungsprozess zu entwerfen und zu generieren.
- diesen Prozess nach Zeit, Maschinenbelegungen, Kosten, zu verbrauchender Energie und anderen detaillierten Informationen im ERP Odoo zu planen.

Rohmaterialbestand

Auf dieser Seite werden die benötigten Rohmaterialien gespeichert.

Je nach dem von Odoo definierten Produktionsbedarf werden automatisch Bestellungen bei den Materiallieferanten aufgegeben. Wir analysieren, dass die Materialstangen mit einem RFID-basierten Chip identifiziert werden, so dass das ERP Odoo jederzeit über die Menge des Materials informiert ist, das das Rohstofflager gelagert hat.

Das Ziel ist es, ein Schneidlager unter dem Einfluss der aktuellen Industrie 4.0 zu schaffen. Das gewählte Lagerkontrollsystem wird den durch die RFID-Technologie identifizierten Personen die Erlaubnis geben, die Maschinen zu benutzen, die Bestände an Rohmaterial zu kontrollieren, die Schneideaufträge auszuführen und zu archivieren, und sie zu benachrichtigen, wenn der Mindestbestand erreicht ist, und den Auftrag nach Bedarf vorzubereiten.

Während des Schneidevorgangs ist es das Ziel, die Information und Kontrolle über Personen, Materialien und Maschinen in diesem Lager zu haben. Und für jeden der Aspekte, die aus betrieblicher und verwaltungstechnischer Sicht als kritisch angesehen werden, gibt es eine automatische Warnung.

Das Schneidlager wurde so im Werk verteilt, dass die Sicherheit bei der Handhabung von Lasten gewährleistet ist. Es wurde großer Wert auf die Anordnung des Rohmaterials gelegt, ein Platz für alles und alles an seinem Platz "5S". Zu diesem Zweck wurden drei kompakte Bienenstöcke gebaut, nach leicht zu bearbeitenden Stählen, Aluminium und Sonderstählen, für Rund-, Vierkant-, Felgen-, Rohr- und Konstruktionsprofile. Mit diesen Bienenstöcken sind wir in der Lage, 227 Größen dieser 3 Meter langen Laminate auf engstem Raum auszusortieren.

CNC Trennsäge

Diese auf CNC-Technologie basierende Zuschnittsäge wandelt die Rohmaterialstangen automatisch in Rohteile um, die auf dem Materiallagersystem gelagert werden. Dieser Prozess wird von Odoo berechnet, abhängig vom Mindestbestand des Materiallagersystems und dem geplanten Produktionsbedarf.

Obwohl der Zuschnitt auf Größe und Menge der Rohteile automatisch erfolgt, muss die Zuführung der Rohmaterialstangen zur Maschine von Lehrern manuell durchgeführt werden.

4

Literaturverzeichnis

Abele, Eberhard; Chryssolouris, George; ElMaraghy, Hoda; Hummel, Vera; Metternich, Joachim; Ranz, Fabian; Sihn, Wilfried and Tisch, Michael. (2015a). Learning Factories for Research, Education, and Training. *5th Conference on Learning Factories*. Elsevier B.V, pp. 1-6. https://doi.org/10.1016/j.procir.2015.02.187 (gathered 2020-09-10).

Abele, Eberhard; Hummel, Vera; Metternich, Joachim; Ranz, Fabian and Tisch, Michael. (2015b). Learning Factory Morphology – Study Of Form And Structure Of An Innovative Learning Approach In The Manufacturing Domain. The Turkish Online Journal of Educational Technology.

https://www.researchgate.net/publication/281344323 Learning Factory Morphology - Study Of Form And Structure Of An Innovative Learning Approach In The Manufacturing Domain (gathered 2020-09-07).

Abele, Eberhard; Metternich, Joachim; and Tisch, Michael. (2019). *Learning Factories Concepts, Guidelines, Best-Practice Examples*. Cham: Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-319-92261-4 (gathered 2020-08-28).

Gewerbliche Schule Crailsheim. (n.d). WAS IST EINE LERNFABRIK 4.0. https://www.gscr.de/index.php?id=203 (gathered 2020-09-09).

Karukapadath Haffees, Rasim and Parekattil, Aswin Kumar. (2019). *A literature review on learning factory.* Diss, Chalmers University of Technology. https://hdl.handle.net/20.500.12380/256553 (gathered 2020-09-09).

Kreimeier, Dieter. (2016). *Die LPS Lernfabrik Qualifizierung in einem realitätsnahen Fabrikumfeld.* Ruhr-Universität Bochum. [PowerPoint slides]. https://www.uni-siegen.de/smi/aktuelles/20161115 lps lernfabrik praesentation kreimeier.p df (gathered 2020-09-10).

Ministerium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württemberg. (2019). Lernfabriken 4.0 in Baden-Württemberg.

https://wm.baden-wuerttemberg.de/de/innovation/schluesseltechnologien/industrie-40/lernfabrik-40/ (gathered 2020-09-10).

Wirtschaft digital Baden-Württemberg. (2020). Lernfabriken.

https://www.wirtschaft-digital-bw.de/zielgruppen/produzierendes-gewerbe/lernfabriken-industrie-40/ (gathered 2020-09-10).

